These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20299725)

  • 1. Scattering matrix approach to multichannel transport in many lead graphene nanoribbons.
    Mencarelli D; Rozzi T; Pierantoni L
    Nanotechnology; 2010 Apr; 21(15):155701. PubMed ID: 20299725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons.
    Mencarelli D; Pierantoni L; Farina M; Di Donato A; Rozzi T
    ACS Nano; 2011 Aug; 5(8):6109-18. PubMed ID: 21732674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dot behavior in bilayer graphene nanoribbons.
    Wang M; Song EB; Lee S; Tang J; Lang M; Zeng C; Xu G; Zhou Y; Wang KL
    ACS Nano; 2011 Nov; 5(11):8769-73. PubMed ID: 22017308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport properties of T-shaped and crossed junctions based on graphene nanoribbons.
    OuYang F; Xiao J; Guo R; Zhang H; Xu H
    Nanotechnology; 2009 Feb; 20(5):055202. PubMed ID: 19417339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of Polarons in Graphene Nanoribbons.
    Ribeiro LA; da Cunha WF; Fonseca AL; e Silva GM; Stafström S
    J Phys Chem Lett; 2015 Feb; 6(3):510-4. PubMed ID: 26261972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio characterization of graphene nanoribbons and their polymer precursors.
    Peköz R; Feng X; Donadio D
    J Phys Condens Matter; 2012 Mar; 24(10):104023. PubMed ID: 22353922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons.
    Zhou G; Cen C; Wang S; Deng M; Prezhdo OV
    J Phys Chem Lett; 2019 Nov; 10(22):7179-7187. PubMed ID: 31644293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study.
    Kan EJ; Xiang HJ; Yang J; Hou JG
    J Chem Phys; 2007 Oct; 127(16):164706. PubMed ID: 17979370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulk properties of solution-synthesized chevron-like graphene nanoribbons.
    Vo TH; Shekhirev M; Lipatov A; Korlacki RA; Sinitskii A
    Faraday Discuss; 2014; 173():105-13. PubMed ID: 25465679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal transport in bent graphene nanoribbons.
    Zhang J; Wang X
    Nanoscale; 2013 Jan; 5(2):734-43. PubMed ID: 23224108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The computational design of junctions between carbon nanotubes and graphene nanoribbons.
    Li YF; Li BR; Zhang HL
    Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport in hexagonal boron nitride nanoribbons.
    Ouyang T; Chen Y; Xie Y; Yang K; Bao Z; Zhong J
    Nanotechnology; 2010 Jun; 21(24):245701. PubMed ID: 20484794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes.
    Kim K; Sussman A; Zettl A
    ACS Nano; 2010 Mar; 4(3):1362-6. PubMed ID: 20131856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustoelectric Current in Graphene Nanoribbons.
    Poole T; Nash GR
    Sci Rep; 2017 May; 7(1):1767. PubMed ID: 28496129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Cheraghchi H; Esmailzade H
    Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upright standing graphene formation on substrates.
    Yuan Q; Hu H; Gao J; Ding F; Liu Z; Yakobson BI
    J Am Chem Soc; 2011 Oct; 133(40):16072-9. PubMed ID: 21888393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-Lattice Coupling in Armchair Graphene Nanoribbons.
    de Oliveira Neto PH; Teixeira JF; da Cunha WF; Gargano R; E Silva GM
    J Phys Chem Lett; 2012 Oct; 3(20):3039-42. PubMed ID: 26292246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons.
    Sinitskii A; Dimiev A; Corley DA; Fursina AA; Kosynkin DV; Tour JM
    ACS Nano; 2010 Apr; 4(4):1949-54. PubMed ID: 20345149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.