These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20299960)

  • 1. An insight into the opening path to semi-open conformation of HIV-1 protease by molecular dynamics simulation.
    Lu T; Chen Y; Li XY
    AIDS; 2010 May; 24(8):1121-5. PubMed ID: 20299960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flap opening mechanism of HIV-1 protease.
    Tóth G; Borics A
    J Mol Graph Model; 2006 May; 24(6):465-74. PubMed ID: 16188477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing.
    Sadiq SK; De Fabritiis G
    Proteins; 2010 Nov; 78(14):2873-85. PubMed ID: 20715057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design.
    Perryman AL; Lin JH; McCammon JA
    Biopolymers; 2006 Jun; 82(3):272-84. PubMed ID: 16508951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
    Tozzini V; Trylska J; Chang CE; McCammon JA
    J Struct Biol; 2007 Mar; 157(3):606-15. PubMed ID: 17029846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle.
    Karthik S; Senapati S
    Proteins; 2011 Jun; 79(6):1830-40. PubMed ID: 21465560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crucial roles of the subnanosecond local dynamics of the flap tips in the global conformational changes of HIV-1 protease.
    Li D; Ji B; Hwang K; Huang Y
    J Phys Chem B; 2010 Mar; 114(8):3060-9. PubMed ID: 20143801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into a mutation-assisted lateral drug escape mechanism from the HIV-1 protease active site.
    Sadiq SK; Wan S; Coveney PV
    Biochemistry; 2007 Dec; 46(51):14865-77. PubMed ID: 18052195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations.
    Kurt N; Scott WR; Schiffer CA; Haliloglu T
    Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism.
    Singh G; Senapati S
    Biochemistry; 2008 Oct; 47(40):10657-64. PubMed ID: 18785756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance.
    Hou T; Yu R
    J Med Chem; 2007 Mar; 50(6):1177-88. PubMed ID: 17300185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray structure and conformational dynamics of the HIV-1 protease in complex with the inhibitor SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics simulations.
    Ringhofer S; Kallen J; Dutzler R; Billich A; Visser AJ; Scholz D; Steinhauser O; Schreiber H; Auer M; Kungl AJ
    J Mol Biol; 1999 Mar; 286(4):1147-59. PubMed ID: 10047488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations.
    Pietrucci F; Marinelli F; Carloni P; Laio A
    J Am Chem Soc; 2009 Aug; 131(33):11811-8. PubMed ID: 19645490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations applied to the study of subtypes of HIV-1 protease common to Brazil, Africa, and Asia.
    Batista PR; Wilter A; Durham EH; Pascutti PG
    Cell Biochem Biophys; 2006; 44(3):395-404. PubMed ID: 16679526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S
    J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S; Artese A; Ceccherini-Silberstein F; Ortuso F; Perno CF; Sing T; Svicher V
    J Chem Inf Model; 2009 Jul; 49(7):1751-61. PubMed ID: 19537723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
    Lepsík M; Kríz Z; Havlas Z
    Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.