These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20299960)

  • 21. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. "Wide-open" 1.3 A structure of a multidrug-resistant HIV-1 protease as a drug target.
    Martin P; Vickrey JF; Proteasa G; Jimenez YL; Wawrzak Z; Winters MA; Merigan TC; Kovari LC
    Structure; 2005 Dec; 13(12):1887-95. PubMed ID: 16338417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations.
    Bartels C; Widmer A; Ehrhardt C
    J Comput Chem; 2005 Sep; 26(12):1294-305. PubMed ID: 15981257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease.
    Zhu Z; Schuster DI; Tuckerman ME
    Biochemistry; 2003 Feb; 42(5):1326-33. PubMed ID: 12564936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations.
    Hu GD; Zhu T; Zhang SL; Wang D; Zhang QG
    Eur J Med Chem; 2010 Jan; 45(1):227-35. PubMed ID: 19910081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E; Samudrala R
    Antivir Ther; 2005; 10(1):157-66. PubMed ID: 15751773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead.
    Perez MA; Fernandes PA; Ramos MJ
    J Mol Graph Model; 2007 Oct; 26(3):634-42. PubMed ID: 17459746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the HIV-1 protease nelfinavir resistance mutation D30N in subtypes B and C through molecular dynamics simulations.
    Soares RO; Batista PR; Costa MG; Dardenne LE; Pascutti PG; Soares MA
    J Mol Graph Model; 2010 Sep; 29(2):137-47. PubMed ID: 20541446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.
    Wang W; Kollman PA
    J Mol Biol; 2000 Nov; 303(4):567-82. PubMed ID: 11054292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational flexibility in the flap domains of ligand-free HIV protease.
    Heaslet H; Rosenfeld R; Giffin M; Lin YC; Tam K; Torbett BE; Elder JH; McRee DE; Stout CD
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):866-75. PubMed ID: 17642513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics studies on HIV-1 protease drug resistance and folding pathways.
    Cecconi F; Micheletti C; Carloni P; Maritan A
    Proteins; 2001 Jun; 43(4):365-72. PubMed ID: 11340653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The molecular evolution of HIV-1 protease simulated at atomic detail.
    Tiana G; Broglia RA
    Proteins; 2009 Sep; 76(4):895-910. PubMed ID: 19296455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases.
    Stoica I; Sadiq SK; Coveney PV
    J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on flexibility and binding affinity of Asp25 of HIV-1 protease mutants.
    Purohit R; Rajasekaran R; Sudandiradoss C; George Priya Doss C; Ramanathan K; Rao S
    Int J Biol Macromol; 2008 May; 42(4):386-91. PubMed ID: 18367244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulations of HIV-1 protease monomer: Assembly of N-terminus and C-terminus into beta-sheet in water solution.
    Yan MC; Sha Y; Wang J; Xiong XQ; Ren JH; Cheng MS
    Proteins; 2008 Feb; 70(3):731-8. PubMed ID: 17729281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H; Duan Z; Luo Q; Shi Y
    Proteins; 1999 Sep; 36(4):462-70. PubMed ID: 10450088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations.
    Aruksakunwong O; Wittayanarakul K; Sompornpisut P; Sanghiran V; Parasuk V; Hannongbua S
    J Mol Graph Model; 2006 Nov; 25(3):324-32. PubMed ID: 16504560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.