These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20299960)

  • 41. A molecular dynamics study of the structural stability of HIV-1 protease under physiological conditions: the role of Na+ ions in stabilizing the active site.
    Kovalskyy D; Dubyna V; Mark AE; Kornelyuk A
    Proteins; 2005 Feb; 58(2):450-8. PubMed ID: 15562519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solvation influences flap collapse in HIV-1 protease.
    Meagher KL; Carlson HA
    Proteins; 2005 Jan; 58(1):119-25. PubMed ID: 15521062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y; Li D; Ji B; Shi X; Gao H
    J Mol Graph Model; 2010 Sep; 29(2):171-7. PubMed ID: 20580296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants.
    Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J
    J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y; Yang CY; Wang S
    J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Consensus modes, a robust description of protein collective motions from multiple-minima normal mode analysis--application to the HIV-1 protease.
    Batista PR; Robert CH; Maréchal JD; Hamida-Rebaï MB; Pascutti PG; Bisch PM; Perahia D
    Phys Chem Chem Phys; 2010 Mar; 12(12):2850-9. PubMed ID: 20449375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation.
    Kolár M; Fanfrlík J; Hobza P
    J Phys Chem B; 2011 Apr; 115(16):4718-24. PubMed ID: 21466174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A combined quantum/classical molecular dynamics study of the catalytic mechanism of HIV protease.
    Liu H; Müller-Plathe F; van Gunsteren WF
    J Mol Biol; 1996 Aug; 261(3):454-69. PubMed ID: 8780786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of drug resistance due to N88S in CRF01_AE HIV-1 protease, analyzed by molecular dynamics simulations.
    Ode H; Matsuyama S; Hata M; Hoshino T; Kakizawa J; Sugiura W
    J Med Chem; 2007 Apr; 50(8):1768-77. PubMed ID: 17367119
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease.
    Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E
    Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trp42 rotamers report reduced flexibility when the inhibitor acetyl-pepstatin is bound to HIV-1 protease.
    Ullrich B; Laberge M; Tölgyesi F; Szeltner Z; Polgár L; Fidy J
    Protein Sci; 2000 Nov; 9(11):2232-45. PubMed ID: 11152134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
    Thorsteinsdottir HB; Schwede T; Zoete V; Meuwly M
    Proteins; 2006 Nov; 65(2):407-23. PubMed ID: 16941468
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
    Chellappan S; Kairys V; Fernandes MX; Schiffer C; Gilson MK
    Proteins; 2007 Aug; 68(2):561-7. PubMed ID: 17474129
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization and computational evaluation of a series of potential active site inhibitors of the V82F/I84V drug-resistant mutant of HIV-1 protease: an application of the relaxed complex method of structure-based drug design.
    Perryman AL; Lin JH; Andrew McCammon J
    Chem Biol Drug Des; 2006 May; 67(5):336-45. PubMed ID: 16784458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dramatic differences in the motions of the mouth of open and closed cytochrome P450BM-3 by molecular dynamics simulations.
    Paulsen MD; Ornstein RL
    Proteins; 1995 Mar; 21(3):237-43. PubMed ID: 7784427
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular dynamics studies on HIV-1 protease: a comparison of the flap motions between wild type protease and the M46I/G51D double mutant.
    Lauria A; Ippolito M; Almerico AM
    J Mol Model; 2007 Nov; 13(11):1151-6. PubMed ID: 17786489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insights into the dynamics of HIV-1 protease: a kinetic network model constructed from atomistic simulations.
    Deng NJ; Zheng W; Gallicchio E; Levy RM
    J Am Chem Soc; 2011 Jun; 133(24):9387-94. PubMed ID: 21561098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics.
    Meher BR; Kumar MV; Bandyopadhyay P
    J Biomol Struct Dyn; 2014; 32(6):899-915. PubMed ID: 23782135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.