These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20300093)

  • 21. Sequence-based protein kinase inhibition: applications for drug development.
    Wexler I; Niv M; Reuveni H
    Biotechniques; 2005 Oct; 39(10 Suppl):S575-6. PubMed ID: 18957040
    [No Abstract]   [Full Text] [Related]  

  • 22. What general conclusions can we draw from kinase profiling data sets?
    Sutherland JJ; Gao C; Cahya S; Vieth M
    Biochim Biophys Acta; 2013 Jul; 1834(7):1425-33. PubMed ID: 23333421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Landscape of Atypical and Eukaryotic Protein Kinases.
    Kanev GK; de Graaf C; de Esch IJP; Leurs R; Würdinger T; Westerman BA; Kooistra AJ
    Trends Pharmacol Sci; 2019 Nov; 40(11):818-832. PubMed ID: 31677919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Akt/mTOR and mitogen-activated protein kinase pathways in lung cancer therapy.
    Papadimitrakopoulou V; Adjei AA
    J Thorac Oncol; 2006 Sep; 1(7):749-51. PubMed ID: 17409953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding.
    Sheinerman FB; Giraud E; Laoui A
    J Mol Biol; 2005 Oct; 352(5):1134-56. PubMed ID: 16139843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein kinases: Role of their dysregulation in carcinogenesis, identification and inhibition.
    Sarkar N; Singh A; Kumar P; Kaushik M
    Drug Res (Stuttg); 2023 Apr; 73(4):189-199. PubMed ID: 36822216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting protein kinases with selective and semipromiscuous covalent inhibitors.
    Miller RM; Taunton J
    Methods Enzymol; 2014; 548():93-116. PubMed ID: 25399643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance.
    Klüter S; Simard JR; Rode HB; Grütter C; Pawar V; Raaijmakers HC; Barf TA; Rabiller M; van Otterlo WA; Rauh D
    Chembiochem; 2010 Dec; 11(18):2557-66. PubMed ID: 21080395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive Chemical Probes: Beyond the Kinase Cysteinome.
    Jones LH
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9220-9223. PubMed ID: 29644769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prospects for pharmacological targeting of pseudokinases.
    Kung JE; Jura N
    Nat Rev Drug Discov; 2019 Jul; 18(7):501-526. PubMed ID: 30850748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polypharmacology-based ceritinib repurposing using integrated functional proteomics.
    Kuenzi BM; Remsing Rix LL; Stewart PA; Fang B; Kinose F; Bryant AT; Boyle TA; Koomen JM; Haura EB; Rix U
    Nat Chem Biol; 2017 Dec; 13(12):1222-1231. PubMed ID: 28991240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical genomic and proteomic methods for determining kinase inhibitor selectivity.
    Krishnamurty R; Maly DJ
    Comb Chem High Throughput Screen; 2007 Sep; 10(8):652-66. PubMed ID: 18045078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular editing of kinase-targeting resorcylic acid lactones (RAL): Fluoroenone RAL.
    Jogireddy R; Barluenga S; Winssinger N
    ChemMedChem; 2010 May; 5(5):670-3. PubMed ID: 20209566
    [No Abstract]   [Full Text] [Related]  

  • 34. Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules.
    Di Michele M; Stes E; Vandermarliere E; Arora R; Astorga-Wells J; Vandenbussche J; van Heerde E; Zubarev R; Bonnet P; Linders JT; Jacoby E; Brehmer D; Martens L; Gevaert K
    J Proteome Res; 2015 Oct; 14(10):4179-93. PubMed ID: 26293246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The resistance tetrad: amino acid hotspots for kinome-wide exploitation of drug-resistant protein kinase alleles.
    Bailey FP; Andreev VI; Eyers PA
    Methods Enzymol; 2014; 548():117-46. PubMed ID: 25399644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmodium kinases as targets for new-generation antimalarials.
    Lucet IS; Tobin A; Drewry D; Wilks AF; Doerig C
    Future Med Chem; 2012 Dec; 4(18):2295-310. PubMed ID: 23234552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unexpected off-targets and paradoxical pathway activation by kinase inhibitors.
    Hantschel O
    ACS Chem Biol; 2015 Jan; 10(1):234-45. PubMed ID: 25531586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crowdsourced mapping of unexplored target space of kinase inhibitors.
    Cichońska A; Ravikumar B; Allaway RJ; Wan F; Park S; Isayev O; Li S; Mason M; Lamb A; Tanoli Z; Jeon M; Kim S; Popova M; Capuzzi S; Zeng J; Dang K; Koytiger G; Kang J; Wells CI; Willson TM; ; Oprea TI; Schlessinger A; Drewry DH; Stolovitzky G; Wennerberg K; Guinney J; Aittokallio T
    Nat Commun; 2021 Jun; 12(1):3307. PubMed ID: 34083538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Doing more than just the structure-structural genomics in kinase drug discovery.
    Marsden BD; Knapp S
    Curr Opin Chem Biol; 2008 Feb; 12(1):40-5. PubMed ID: 18267130
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ID1 overexpression increases gefitinib sensitivity in non-small cell lung cancer by activating RIP3/MLKL-dependent necroptosis.
    Tan HY; Wang N; Chan YT; Zhang C; Guo W; Chen F; Zhong Z; Li S; Feng Y
    Cancer Lett; 2020 Apr; 475():109-118. PubMed ID: 32004572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.