These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20300204)

  • 1. Single-molecule and superresolution imaging in live bacteria cells.
    Biteen JS; Moerner WE
    Cold Spring Harb Perspect Biol; 2010 Mar; 2(3):a000448. PubMed ID: 20300204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring protein superstructures and dynamics in live bacterial cells using single-molecule and superresolution imaging.
    Biteen JS; Shapiro L; Moerner WE
    Methods Mol Biol; 2011; 783():139-58. PubMed ID: 21909887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of the movement of single histidine kinase molecules in live Caulobacter cells.
    Deich J; Judd EM; McAdams HH; Moerner WE
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15921-6. PubMed ID: 15522969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus.
    Lew MD; Lee SF; Ptacin JL; Lee MK; Twieg RJ; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):E1102-10. PubMed ID: 22031697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in
    Dahlberg PD; Saurabh S; Sartor AM; Wang J; Mitchell PG; Chiu W; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13937-13944. PubMed ID: 32513734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP.
    Biteen JS; Thompson MA; Tselentis NK; Bowman GR; Shapiro L; Moerner WE
    Nat Methods; 2008 Nov; 5(11):947-9. PubMed ID: 18794860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism.
    Biteen JS; Goley ED; Shapiro L; Moerner WE
    Chemphyschem; 2012 Mar; 13(4):1007-12. PubMed ID: 22262316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial organization and dynamics of RNase E and ribosomes in
    Bayas CA; Wang J; Lee MK; Schrader JM; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3712-E3721. PubMed ID: 29610352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus.
    Angelastro PS; Sliusarenko O; Jacobs-Wagner C
    J Bacteriol; 2010 Jan; 192(2):539-52. PubMed ID: 19897656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins.
    Viollier PH; Sternheim N; Shapiro L
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13831-6. PubMed ID: 12370432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo Architecture of the Polar Organizing Protein Z (PopZ) Meshwork in the Alphaproteobacteria Magnetospirillum gryphiswaldense and Caulobacter crescentus.
    Toro-Nahuelpan M; Plitzko JM; Schüler D; Pfeiffer D
    J Mol Biol; 2022 Mar; 434(5):167423. PubMed ID: 34971672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polar Localization Hub Protein PopZ Restrains Adaptor-Dependent ClpXP Proteolysis in Caulobacter crescentus.
    Joshi KK; Battle CM; Chien P
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30082457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator.
    Hinz AJ; Larson DE; Smith CS; Brun YV
    Mol Microbiol; 2003 Feb; 47(4):929-41. PubMed ID: 12581350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell pole-specific activation of a critical bacterial cell cycle kinase.
    Iniesta AA; Hillson NJ; Shapiro L
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7012-7. PubMed ID: 20351295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle.
    Jacobs C; Hung D; Shapiro L
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4095-100. PubMed ID: 11274434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of PAmKate as a Red Photoactivatable Fluorescent Protein for Cryogenic Super-Resolution Imaging.
    Dahlberg PD; Sartor AM; Wang J; Saurabh S; Shapiro L; Moerner WE
    J Am Chem Soc; 2018 Oct; 140(39):12310-12313. PubMed ID: 30222332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-component signaling systems and cell cycle control in Caulobacter crescentus.
    Purcell EB; Boutte CC; Crosson S
    Adv Exp Med Biol; 2008; 631():122-30. PubMed ID: 18792685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput identification of protein localization dependency networks.
    Christen B; Fero MJ; Hillson NJ; Bowman G; Hong SH; Shapiro L; McAdams HH
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4681-6. PubMed ID: 20176934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity.
    Perez AM; Mann TH; Lasker K; Ahrens DG; Eckart MR; Shapiro L
    mBio; 2017 Feb; 8(1):. PubMed ID: 28246363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator.
    Ohta N; Newton A
    J Bacteriol; 2003 Aug; 185(15):4424-31. PubMed ID: 12867451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.