These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20300674)

  • 1. Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics.
    Siegrist J; Amasia M; Singh N; Banerjee D; Madou M
    Lab Chip; 2010 Apr; 10(7):876-86. PubMed ID: 20300674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient energy based modeling and experimental validation of liquid filling in planar micro-fluidic components and networks.
    Treise I; Fortner N; Shapiro B; Hightower A
    Lab Chip; 2005 Mar; 5(3):285-97. PubMed ID: 15726205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of numerical study on thermoelectric-based heating in an integrated centrifugal microfluidic platform for polymerase chain reaction amplification.
    Amasia M; Kang SW; Banerjee D; Madou M
    Biomicrofluidics; 2013; 7(1):14106. PubMed ID: 24403998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid circular microfluidic mixer utilizing unbalanced driving force.
    Lin CH; Tsai CH; Pan CW; Fu LM
    Biomed Microdevices; 2007 Feb; 9(1):43-50. PubMed ID: 17106640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and modeling of flow in rotating spiral microchannels: towards math-aided design of microfluidic systems using centrifugal pumping.
    Wang L; Kropinski MC; Li PC
    Lab Chip; 2011 Jun; 11(12):2097-108. PubMed ID: 21552608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel.
    Oh J; Hart R; Capurro J; Noh HM
    Lab Chip; 2009 Jan; 9(1):62-78. PubMed ID: 19209337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic simulation of cell docking in microfluidic channels with different dam structures.
    Yang J; Li CW; Yang M
    Lab Chip; 2004 Feb; 4(1):53-9. PubMed ID: 15007441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples.
    Siegrist J; Gorkin R; Bastien M; Stewart G; Peytavi R; Kido H; Bergeron M; Madou M
    Lab Chip; 2010 Feb; 10(3):363-71. PubMed ID: 20091009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.
    Wang PJ; Chang CY; Chang ML
    Biosens Bioelectron; 2004 Jul; 20(1):115-21. PubMed ID: 15142583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.
    Clime L; Brassard D; Geissler M; Veres T
    Lab Chip; 2015 Jun; 15(11):2400-11. PubMed ID: 25860103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model based design of a microfluidic mixer driven by induced charge electroosmosis.
    Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP
    Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices.
    Rodríguez I; Chandrasekhar N
    Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis estimation in a centrifugal blood pump using a tensor-based measure.
    Arora D; Behr M; Pasquali M
    Artif Organs; 2006 Jul; 30(7):539-47. PubMed ID: 16836735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid artificial neural network-numerical model for ground water problems.
    Szidarovszky F; Coppola EA; Long J; Hall AD; Poulton MM
    Ground Water; 2007; 45(5):590-600. PubMed ID: 17760585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and numerical analysis of temperature gradient focusing via Joule heating.
    Sommer GJ; Kim SM; Littrell RJ; Hasselbrink EF
    Lab Chip; 2007 Jul; 7(7):898-907. PubMed ID: 17594010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes.
    Matsubara Y; Kerman K; Kobayashi M; Yamamura S; Morita Y; Tamiya E
    Biosens Bioelectron; 2005 Feb; 20(8):1482-90. PubMed ID: 15626601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.