BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 20300789)

  • 1. Use of the Burrows-Wheeler similarity distribution to the comparison of the proteins.
    Yang L; Chang G; Zhang X; Wang T
    Amino Acids; 2010 Aug; 39(3):887-98. PubMed ID: 20300789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Burrows-Wheeler similarity distribution between biological sequences based on Burrows-Wheeler transform.
    Yang L; Zhang X; Wang T
    J Theor Biol; 2010 Feb; 262(4):742-9. PubMed ID: 19903487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the efficiency of evolutionary change-based and side chain orientation-based fold recognition potentials.
    Vishnepolsky B; Managadze G; Pirtskhalava M
    Proteins; 2008 Jun; 71(4):1863-78. PubMed ID: 18175309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of similarity/dissimilarity of protein sequences.
    Yao YH; Dai Q; Li C; He PA; Nan XY; Zhang YZ
    Proteins; 2008 Dec; 73(4):864-71. PubMed ID: 18536018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein structural class for the twilight zone sequences.
    Kurgan L; Chen K
    Biochem Biophys Res Commun; 2007 Jun; 357(2):453-60. PubMed ID: 17433260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral similarity function: a novel and universal method for similarity analysis of biological sequences.
    Wang S; Tian F; Qiu Y; Liu X
    J Theor Biol; 2010 Jul; 265(2):194-201. PubMed ID: 20399215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein structural similarity search by Ramachandran codes.
    Lo WC; Huang PJ; Chang CH; Lyu PC
    BMC Bioinformatics; 2007 Aug; 8():307. PubMed ID: 17716377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An examination of the conservation of surface patch polarity for proteins.
    Shanahan HP; Thornton JM
    Bioinformatics; 2004 Sep; 20(14):2197-204. PubMed ID: 15073014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A similarity network approach for the analysis and comparison of protein sequence/structure sets.
    Valavanis I; Spyrou G; Nikita K
    J Biomed Inform; 2010 Apr; 43(2):257-67. PubMed ID: 20097308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid pair interchanges at spatially conserved locations.
    Naor D; Fischer D; Jernigan RL; Wolfson HJ; Nussinov R
    J Mol Biol; 1996 Mar; 256(5):924-38. PubMed ID: 8601843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Within the twilight zone: a sensitive profile-profile comparison tool based on information theory.
    Yona G; Levitt M
    J Mol Biol; 2002 Feb; 315(5):1257-75. PubMed ID: 11827492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of unfolded segments in a protein sequence based on amino acid composition.
    Coeytaux K; Poupon A
    Bioinformatics; 2005 May; 21(9):1891-900. PubMed ID: 15657106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic similarity algorithm for searching the Gene Ontology terms and annotating anonymous protein sequences.
    Othman RM; Deris S; Illias RM
    J Biomed Inform; 2008 Feb; 41(1):65-81. PubMed ID: 17681495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations of sequences and amino acid compositions of proteins that sustain their biological functions: An analysis of the cyclophilin family of proteins.
    Galat A
    Arch Biochem Biophys; 1999 Nov; 371(2):149-62. PubMed ID: 10545201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity/dissimilarity studies of protein sequences based on a new 2D graphical representation.
    Yao YH; Dai Q; Li L; Nan XY; He PA; Zhang YZ
    J Comput Chem; 2010 Apr; 31(5):1045-52. PubMed ID: 19777597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scheme for multiple sequence alignment optimization--an improvement based on family representative mechanics features.
    Liu X; Zhao YP
    J Theor Biol; 2009 Dec; 261(4):593-7. PubMed ID: 19733185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein superfamily classification using fuzzy rule-based classifier.
    Mansoori EG; Zolghadri MJ; Katebi SD
    IEEE Trans Nanobioscience; 2009 Mar; 8(1):92-9. PubMed ID: 19307166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.