These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20300806)

  • 1. Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana.
    Vaistij FE; Elias L; George GL; Jones L
    Plant Mol Biol; 2010 Jul; 73(4-5):391-7. PubMed ID: 20300806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phenotypic and molecular assessment of the non-conserved Arabidopsis MICRORNA163/S-ADENOSYL-METHYLTRANSFERASE regulatory module during biotic stress.
    Litholdo CG; Eamens AL; Waterhouse PM
    Mol Genet Genomics; 2018 Apr; 293(2):503-523. PubMed ID: 29196849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana.
    Qu G; Kruszka K; Plewka P; Yang SY; Chiou TJ; Jarmolowski A; Szweykowska-Kulinska Z; Echeverria M; Karlowski WM
    BMC Genomics; 2015 Nov; 16():1009. PubMed ID: 26607788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
    Wang XJ; Reyes JL; Chua NH; Gaasterland T
    Genome Biol; 2004; 5(9):R65. PubMed ID: 15345049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-specific silencing of Arabidopsis SU(VAR)3-9 HOMOLOG8 by miR171a.
    Manavella PA; Koenig D; Rubio-Somoza I; Burbano HA; Becker C; Weigel D
    Plant Physiol; 2013 Feb; 161(2):805-12. PubMed ID: 23204429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana.
    Zhan S; Lukens L
    PLoS One; 2010 Apr; 5(4):e10157. PubMed ID: 20405016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids.
    Ng DW; Zhang C; Miller M; Palmer G; Whiteley M; Tholl D; Chen ZJ
    Plant Cell; 2011 May; 23(5):1729-40. PubMed ID: 21602291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis.
    Francisco-Mangilet AG; Karlsson P; Kim MH; Eo HJ; Oh SA; Kim JH; Kulcheski FR; Park SK; Manavella PA
    Plant J; 2015 Jun; 82(6):1018-1029. PubMed ID: 25976549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes.
    Eamens AL; Smith NA; Curtin SJ; Wang MB; Waterhouse PM
    RNA; 2009 Dec; 15(12):2219-35. PubMed ID: 19861421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.
    Vaucheret H; Vazquez F; Crété P; Bartel DP
    Genes Dev; 2004 May; 18(10):1187-97. PubMed ID: 15131082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA metabolism in plants.
    Chen X
    Curr Top Microbiol Immunol; 2008; 320():117-36. PubMed ID: 18268842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STV1, a ribosomal protein, binds primary microRNA transcripts to promote their interaction with the processing complex in Arabidopsis.
    Li S; Liu K; Zhang S; Wang X; Rogers K; Ren G; Zhang C; Yu B
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1424-1429. PubMed ID: 28115696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mRNA adenosine methylase (MTA) deposits m
    Bhat SS; Bielewicz D; Gulanicz T; Bodi Z; Yu X; Anderson SJ; Szewc L; Bajczyk M; Dolata J; Grzelak N; Smolinski DJ; Gregory BD; Fray RG; Jarmolowski A; Szweykowska-Kulinska Z
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21785-21795. PubMed ID: 32817553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana.
    Eamens AL; Wang MB
    Plant Signal Behav; 2011 Mar; 6(3):349-59. PubMed ID: 21358288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
    Yang X; Zhang H; Li L
    Plant J; 2012 May; 70(3):421-31. PubMed ID: 22247970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins.
    Merchan F; Boualem A; Crespi M; Frugier F
    Genome Biol; 2009; 10(12):R136. PubMed ID: 19951405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNAs transcriptionally regulate promoter activity in Arabidopsis thaliana.
    Yang G; Li Y; Wu B; Zhang K; Gao L; Zheng C
    J Integr Plant Biol; 2019 Nov; 61(11):1128-1133. PubMed ID: 30623571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of brassinosteroid responsive small RNAs in Arabidopsis thaliana.
    Park SY; Choi JH; Oh DH; Johnson JC; Dassanayake M; Jeong DH; Oh MH
    Genes Genomics; 2020 Aug; 42(8):957-969. PubMed ID: 32648234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgene-Like Animal Models Using Intronic MicroRNAs.
    Lin SL; Chang SE; Ying SY
    Methods Mol Biol; 2018; 1733():239-254. PubMed ID: 29435938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.