BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20300892)

  • 1. Assignment of the orphan nuclear receptor Nurr1 by NMR.
    Michiels P; Atkins K; Ludwig C; Whittaker S; van Dongen M; Günther U
    Biomol NMR Assign; 2010 Apr; 4(1):101-5. PubMed ID: 20300892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining a Canonical Ligand-Binding Pocket in the Orphan Nuclear Receptor Nurr1.
    de Vera IMS; Munoz-Tello P; Zheng J; Dharmarajan V; Marciano DP; Matta-Camacho E; Giri PK; Shang J; Hughes TS; Rance M; Griffin PR; Kojetin DJ
    Structure; 2019 Jan; 27(1):66-77.e5. PubMed ID: 30416039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand Dependent Switch from RXR Homo- to RXR-NURR1 Heterodimerization.
    Scheepstra M; Andrei SA; de Vries RMJM; Meijer FA; Ma JN; Burstein ES; Olsson R; Ottmann C; Milroy LG; Brunsveld L
    ACS Chem Neurosci; 2017 Sep; 8(9):2065-2077. PubMed ID: 28691794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors.
    Wang Z; Benoit G; Liu J; Prasad S; Aarnisalo P; Liu X; Xu H; Walker NP; Perlmann T
    Nature; 2003 May; 423(6939):555-60. PubMed ID: 12774125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (1)H, (15)N and (13)C chemical shift assignments of RNA repeats binding protein -- CUGBP1ab.
    Jun KY; Xia Y; Han X; Zhang H; Timchenko L; Swanson MS; Gao X
    J Biomol NMR; 2004 Nov; 30(3):371-2. PubMed ID: 15756469
    [No Abstract]   [Full Text] [Related]  

  • 6. (1)H, (13)C and (15)N backbone assignment of a 32 kDa hypothetical protein from Arabidopsis thaliana, At3g16450.1.
    Sugimori N; Torizawa T; Aceti DJ; Thao S; Markley JL; Kainosho M
    J Biomol NMR; 2004 Nov; 30(3):357-8. PubMed ID: 15756462
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural insights into ligand-binding pocket formation in Nurr1 by molecular dynamics simulations.
    Windshügel B
    J Biomol Struct Dyn; 2019 Oct; 37(17):4651-4657. PubMed ID: 30582418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of NR4A Ligands That Directly Bind and Modulate the Orphan Nuclear Receptor Nurr1.
    Munoz-Tello P; Lin H; Khan P; de Vera IMS; Kamenecka TM; Kojetin DJ
    J Med Chem; 2020 Dec; 63(24):15639-15654. PubMed ID: 33289551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1H, 13C and 15N assignments for the II-III loop region of the skeletal dyhydropyridine receptor.
    Cui Y; Karunasekara Y; Harvey PJ; Board PG; Dulhunty AF; Casarotto MG
    J Biomol NMR; 2005 May; 32(1):89-90. PubMed ID: 16041487
    [No Abstract]   [Full Text] [Related]  

  • 10. (1)H, (15)N, and (13)C chemical shift assignments of the resuscitation promoting factor domain of Rv1009 from Mycobacterium tuberculosis.
    Cohen-Gonsaud M; Barthe P; Pommier F; Harris R; Driscoll PC; Keep NH; Roumestand C
    J Biomol NMR; 2004 Nov; 30(3):373-4. PubMed ID: 15754060
    [No Abstract]   [Full Text] [Related]  

  • 11. (1)H, (13)C, and (15)N resonance assignments and secondary structure of human pancreatitis-associated protein (hPAP).
    Ho MR; Lou YC; Lin WC; Lyu PC; Chen C
    J Biomol NMR; 2004 Nov; 30(3):381-2. PubMed ID: 15754062
    [No Abstract]   [Full Text] [Related]  

  • 12. Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state.
    Linser R; Fink U; Reif B
    J Biomol NMR; 2010 May; 47(1):1-6. PubMed ID: 20232230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone assignment of the little finger domain of a Y-family DNA polymerase.
    Ma D; Fowler JD; Suo Z
    Biomol NMR Assign; 2011 Oct; 5(2):195-8. PubMed ID: 21337030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (1)H, (13)C and (15)N resonance assignments of coactosin, a cytoskeletal regulatory protein.
    Hellman M; Paavilainen V; Annila A; Lappalainen P; Permi P
    J Biomol NMR; 2004 Nov; 30(3):365-6. PubMed ID: 15756466
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.
    de Vera IM; Giri PK; Munoz-Tello P; Brust R; Fuhrmann J; Matta-Camacho E; Shang J; Campbell S; Wilson HD; Granados J; Gardner WJ; Creamer TP; Solt LA; Kojetin DJ
    ACS Chem Biol; 2016 Jul; 11(7):1795-9. PubMed ID: 27128111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance.
    Eletsky A; Kienhöfer A; Hilvert D; Pervushin K
    Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Nurr1 ligand-binding domain co-activator interaction surface.
    Volakakis N; Malewicz M; Kadkhodai B; Perlmann T; Benoit G
    J Mol Endocrinol; 2006 Oct; 37(2):317-26. PubMed ID: 17032747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study.
    Hein C; Löhr F; Schwarz D; Dötsch V
    Biopolymers; 2017 May; 107(5):. PubMed ID: 28035667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (1)H, (13)C, and (15)N resonance assignments of the EscJ protein, a structural component of the Type III secretion system of enteropathogenic E. coli (EPEC).
    Prasannan S; Simpson P; Wilson RK; Crepin VF; Frankel G; Matthews S
    J Biomol NMR; 2004 Nov; 30(3):387-8. PubMed ID: 15754065
    [No Abstract]   [Full Text] [Related]  

  • 20. Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments.
    Constantine KL; Davis ME; Metzler WJ; Mueller L; Claus BL
    J Am Chem Soc; 2006 Jun; 128(22):7252-63. PubMed ID: 16734479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.