These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20301125)

  • 1. Particle trapping using dielectrophoretically patterned carbon nanotubes.
    Khoshmanesh K; Zhang C; Nahavandi S; Tovar-Lopez FJ; Baratchi S; Hu Z; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Apr; 31(8):1366-75. PubMed ID: 20301125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoretically patterned carbon nanotubes to sort microparticles.
    Khoshmanesh K; Zhang C; Nahavandi S; Baratchi S; Mitchell A; Kalantar-zadeh K
    Electrophoresis; 2010 Oct; 31(20):3380-90. PubMed ID: 20872413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes.
    Khoshmanesh K; Zhang C; Tovar-Lopez FJ; Nahavandi S; Baratchi S; Kalantar-zadeh K; Mitchell A
    Electrophoresis; 2009 Nov; 30(21):3707-17. PubMed ID: 19810028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes.
    Liao S; Xu G; Wang W; Watari F; Cui F; Ramakrishna S; Chan CK
    Acta Biomater; 2007 Sep; 3(5):669-75. PubMed ID: 17512807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes.
    Zhou R; Wang P; Chang HC
    Electrophoresis; 2006 Apr; 27(7):1376-85. PubMed ID: 16568404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein manipulation with insulator-based dielectrophoresis and direct current electric fields.
    Lapizco-Encinas BH; Ozuna-Chacón S; Rito-Palomares M
    J Chromatogr A; 2008 Oct; 1206(1):45-51. PubMed ID: 18571183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device.
    Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA
    Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DC electrokinetic particle transport in an L-shaped microchannel.
    Ai Y; Park S; Zhu J; Xuan X; Beskok A; Qian S
    Langmuir; 2010 Feb; 26(4):2937-44. PubMed ID: 19852473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology.
    Fang FF; Choi HJ; Seo Y
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):54-60. PubMed ID: 20356220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels.
    Barrett LM; Skulan AJ; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6798-804. PubMed ID: 16255576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels.
    Park JU; Meitl MA; Hur SH; Usrey ML; Strano MS; Kenis PJ; Rogers JA
    Angew Chem Int Ed Engl; 2006 Jan; 45(4):581-5. PubMed ID: 16342126
    [No Abstract]   [Full Text] [Related]  

  • 19. Rapid microparticle patterning by enhanced dielectrophoresis effect on a double-layer electrode substrate.
    Cheng W; Li SZ; Zeng Q; Yu XL; Wang Y; Chan HL; Liu W; Guo SS; Zhao XZ
    Electrophoresis; 2011 Nov; 32(23):3371-7. PubMed ID: 22058049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators.
    Lapizco-Encinas BH; Simmons BA; Cummings EB; Fintschenko Y
    Anal Chem; 2004 Mar; 76(6):1571-9. PubMed ID: 15018553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.