These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20301125)

  • 21. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel.
    Church C; Zhu J; Xuan X
    Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale chemical imaging and spectroscopy of individual RuO(2) coated carbon nanotubes.
    Zhou J; Wang J; Fang H; Wu C; Cutler JN; Sham TK
    Chem Commun (Camb); 2010 Apr; 46(16):2778-80. PubMed ID: 20369180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites.
    Narayanan TN; Mary AP; Shaijumon MM; Ci L; Ajayan PM; Anantharaman MR
    Nanotechnology; 2009 Feb; 20(5):055607. PubMed ID: 19417354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentrating particles on drop surfaces using external electric fields.
    Nudurupati S; Janjua M; Aubry N; Singh P
    Electrophoresis; 2008 Mar; 29(5):1164-72. PubMed ID: 18306181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe.
    Wood NR; Wolsiefer AI; Cohn RW; Williams SJ
    Electrophoresis; 2013 Jul; 34(13):1922-30. PubMed ID: 23592407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.
    Lee HY; Voldman J
    Anal Chem; 2007 Mar; 79(5):1833-9. PubMed ID: 17253658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microcapillary-assisted dielectrophoresis for single-particle positioning.
    Luo Y; Cao X; Huang P; Yobas L
    Lab Chip; 2012 Oct; 12(20):4085-92. PubMed ID: 22892643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH-sensitive multiwalled carbon nanotube dispersion with silk fibroins.
    Kim HS; Yoon SH; Kwon SM; Jin HJ
    Biomacromolecules; 2009 Jan; 10(1):82-6. PubMed ID: 19053291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures.
    Jen CP; Chen TW
    Biomed Microdevices; 2009 Jun; 11(3):597-607. PubMed ID: 19104941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3-D dielectrophoretic filter chip.
    Iliescu C; Xu G; Loe FC; Ong PL; Tay FE
    Electrophoresis; 2007 Apr; 28(7):1107-14. PubMed ID: 17330223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrokinetic particle entry into microchannels.
    Zhu J; Hu G; Xuan X
    Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous particle separation based on electrical properties using alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2009 Sep; 30(18):3124-33. PubMed ID: 19764062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvent-dependent fluorescence property of multi-walled carbon nanotubes noncovalently functionalized by pyrene-derivatized polymer.
    Gao Y; Shi M; Zhou R; Xue C; Wang M; Chen H
    Nanotechnology; 2009 Apr; 20(13):135705. PubMed ID: 19420514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dielectrophoresis of lambda-DNA using 3D carbon electrodes.
    Martinez-Duarte R; Camacho-Alanis F; Renaud P; Ros A
    Electrophoresis; 2013 Apr; 34(7):1113-22. PubMed ID: 23348619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diamagnetic repulsion--a versatile tool for label-free particle handling in microfluidic devices.
    Peyman SA; Kwan EY; Margarson O; Iles A; Pamme N
    J Chromatogr A; 2009 Dec; 1216(52):9055-62. PubMed ID: 19592004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing.
    Fernández-Sánchez C; Pellicer E; Orozco J; Jiménez-Jorquera C; Lechuga LM; Mendoza E
    Nanotechnology; 2009 Aug; 20(33):335501. PubMed ID: 19636101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.