BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20301127)

  • 1. Pumpless dispensing of a droplet by breaking up a liquid bridge formed by electric induction.
    Hong JS; Lee BS; Moon D; Lee JG; Kang IS
    Electrophoresis; 2010 Apr; 31(8):1357-65. PubMed ID: 20301127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrohydrodynamic (EHD) dispensing of nanoliter DNA droplets for microarrays.
    Lee JG; Cho HJ; Huh N; Ko C; Lee WC; Jang YH; Lee BS; Kang IS; Choi JW
    Biosens Bioelectron; 2006 Jun; 21(12):2240-7. PubMed ID: 16384694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEP actuated nanoliter droplet dispensing using feedback control.
    Wang KL; Jones TB; Raisanen A
    Lab Chip; 2009 Apr; 9(7):901-9. PubMed ID: 19294300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
    Zhang Q; Zeng S; Qin J; Lin B
    Electrophoresis; 2009 Sep; 30(18):3181-8. PubMed ID: 19705356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drop formation via breakup of a liquid bridge in an AC electric field.
    Lee BS; Cho HJ; Lee JG; Huh N; Choi JW; Kang IS
    J Colloid Interface Sci; 2006 Oct; 302(1):294-307. PubMed ID: 16797576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle.
    Barbulovic-Nad I; Xuan X; Lee JS; Li D
    Lab Chip; 2006 Feb; 6(2):274-9. PubMed ID: 16450038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid DEP actuation and precision dispensing of variable volume droplets.
    Prakash R; Paul R; Kaler KV
    Lab Chip; 2010 Nov; 10(22):3094-102. PubMed ID: 20862436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallelized edge-based droplet generation (EDGE) devices.
    van Dijke K; Veldhuis G; Schroën K; Boom R
    Lab Chip; 2009 Oct; 9(19):2824-30. PubMed ID: 19967120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.
    Chau SW; Hsu KL; Chen SC; Liou TM; Shih KC
    Biosens Bioelectron; 2004 Jul; 20(1):133-8. PubMed ID: 15142586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEP actuation of emulsion jets and dispensing of sub-nanoliter emulsion droplets.
    Prakash R; Kaler KV
    Lab Chip; 2009 Oct; 9(19):2836-44. PubMed ID: 19967122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical control of individual droplet breaking and droplet contents extraction.
    Zeng S; Pan X; Zhang Q; Lin B; Qin J
    Anal Chem; 2011 Mar; 83(6):2083-9. PubMed ID: 21338060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic droplet-based liquid-liquid extraction.
    Mary P; Studer V; Tabeling P
    Anal Chem; 2008 Apr; 80(8):2680-7. PubMed ID: 18351786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planar digital nanoliter dispensing system based on thermocapillary actuation.
    Darhuber AA; Valentino JP; Troian SM
    Lab Chip; 2010 Apr; 10(8):1061-71. PubMed ID: 20358115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectrophoresis of reverse phase emulsions.
    Flores-Rodriguez N; Bryning Z; Markx GH
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):137-44. PubMed ID: 16441170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of field-induced droplet ionization: time-resolved studies of distortion, jetting, and progeny formation from charged and neutral methanol droplets exposed to strong electric fields.
    Grimm RL; Beauchamp JL
    J Phys Chem B; 2005 Apr; 109(16):8244-50. PubMed ID: 16851963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.