These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2030216)

  • 1. Reflection of retrograde waves within the cochlea and at the stapes.
    Shera CA; Zweig G
    J Acoust Soc Am; 1991 Mar; 89(3):1290-305. PubMed ID: 2030216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A symmetry suppresses the cochlear catastrophe.
    Shera CA; Zweig G
    J Acoust Soc Am; 1991 Mar; 89(3):1276-89. PubMed ID: 2030215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse propagation of sound in the gerbil cochlea.
    Ren T
    Nat Neurosci; 2004 Apr; 7(4):333-4. PubMed ID: 15034589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do forward- and backward-traveling waves occur within the cochlea? Countering the critique of Nobili et al.
    Shera CA; Tubis A; Talmadge CL
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):349-59. PubMed ID: 15675000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive measurement of the cochlear traveling-wave ratio.
    Shera CA; Zweig G
    J Acoust Soc Am; 1993 Jun; 93(6):3333-52. PubMed ID: 8326061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear compression wave: an implication of the Allen-Fahey experiment.
    Ren T; Nuttall AL
    J Acoust Soc Am; 2006 Apr; 119(4):1940-2. PubMed ID: 16642805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.
    Dong W
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2005 Jul; 118(1):287-313. PubMed ID: 16119350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distortion products and backward-traveling waves in nonlinear active models of the cochlea.
    Sisto R; Moleti A; Botti T; Bertaccini D; Shera CA
    J Acoust Soc Am; 2011 May; 129(5):3141-52. PubMed ID: 21568417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are active elements necessary in the basilar membrane impedance?
    Diependaal RJ; Viergever MA; de Boer E
    J Acoust Soc Am; 1986 Jul; 80(1):124-32. PubMed ID: 3745658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Middle ear, cochlea, and Tonndorf.
    Zwislocki JJ
    Am J Otolaryngol; 1981 Aug; 2(3):240-50. PubMed ID: 7025677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possibility of sharp tuning in a linear transversally inhomogeneous cochlear model.
    Novoselova SM
    Hear Res; 1989 Sep; 41(2-3):125-35. PubMed ID: 2808145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input impedance of the cochlea in cat.
    Lynch TJ; Nedzelnitsky V; Peake WT
    J Acoust Soc Am; 1982 Jul; 72(1):108-30. PubMed ID: 7108034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direction of wave propagation in the cochlea for internally excited basilar membrane.
    Li Y; Grosh K
    J Acoust Soc Am; 2012 Jun; 131(6):4710-21. PubMed ID: 22712944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydromechanical Structure of the Cochlea Supports the Backward Traveling Wave in the Cochlea
    Chen F; Zha D; Yang X; Hubbard A; Nuttall A
    Neural Plast; 2018; 2018():7502648. PubMed ID: 30123255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On Riccati equations describing impedance relations for forward and backward excitation in the one-dimensional cochlea model.
    Kaernbach C; König P; Schillen T
    J Acoust Soc Am; 1987 Feb; 81(2):408-11. PubMed ID: 3558956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.