BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20302316)

  • 21. Physical characterization of pentamidine isethionate during freeze-drying-relevance to development of stable lyophilized product.
    Sundaramurthi P; Burcusa MR; Suryanarayanan R
    J Pharm Sci; 2012 May; 101(5):1732-43. PubMed ID: 22271285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low temperature properties of lyophilized solutions and their influence on lyophilization cycle design: pentamidine isethionate.
    Williams NA; Schwinke DL
    J Pharm Sci Technol; 1994; 48(3):135-9. PubMed ID: 8069514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase transitions of glycine in frozen aqueous solutions and during freeze-drying.
    Pyne A; Suryanarayanan R
    Pharm Res; 2001 Oct; 18(10):1448-54. PubMed ID: 11697471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing.
    Bhatnagar BS; Martin SM; Teagarden DL; Shalaev EY; Suryanarayanan R
    J Pharm Sci; 2010 Jun; 99(6):2609-19. PubMed ID: 20091827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
    Pikal-Cleland KA; Cleland JL; Anchordoquy TJ; Carpenter JF
    J Pharm Sci; 2002 Sep; 91(9):1969-79. PubMed ID: 12210044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystallization of trehalose in frozen solutions and its phase behavior during drying.
    Sundaramurthi P; Patapoff TW; Suryanarayanan R
    Pharm Res; 2010 Nov; 27(11):2374-83. PubMed ID: 20811935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raffinose crystallization during freeze-drying and its impact on recovery of protein activity.
    Chatterjee K; Shalaev EY; Suryanarayanan R
    Pharm Res; 2005 Feb; 22(2):303-9. PubMed ID: 15783079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying.
    Shalaev EY; Johnson-Elton TD; Chang L; Pikal MJ
    Pharm Res; 2002 Feb; 19(2):195-201. PubMed ID: 11883647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.
    Ragoonanan V; Suryanarayanan R
    Pharm Res; 2014 Jun; 31(6):1512-24. PubMed ID: 24398694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible Self-Association in Lactate Dehydrogenase during Freeze-Thaw in Buffered Solutions Using Neutron Scattering.
    Sonje J; Thakral S; Krueger S; Suryanarayanan R
    Mol Pharm; 2021 Dec; 18(12):4459-4474. PubMed ID: 34709831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of frozen glucose solutions.
    Taylor LS; York P; Williams AC; Mehta V
    Pharm Dev Technol; 1997 Nov; 2(4):395-402. PubMed ID: 9552468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions.
    Gómez G; Pikal MJ; Rodríguez-Hornedo N
    Pharm Res; 2001 Jan; 18(1):90-7. PubMed ID: 11336359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystalline to amorphous transition of disodium hydrogen phosphate during primary drying.
    Pyne A; Chatterjee K; Suryanarayanan R
    Pharm Res; 2003 May; 20(5):802-3. PubMed ID: 12751637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study.
    Mockus LN; Paul TW; Pease NA; Harper NJ; Basu PK; Oslos EA; Sacha GA; Kuu WY; Hardwick LM; Karty JJ; Pikal MJ; Hee E; Khan MA; Nail SL
    Pharm Dev Technol; 2011; 16(6):549-76. PubMed ID: 21932931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ice Recrystallization in a Solution of a Cryoprotector and Its Inhibition by a Protein: Synchrotron X-Ray Diffraction Study.
    Zakharov B; Fisyuk A; Fitch A; Watier Y; Kostyuchenko A; Varshney D; Sztucki M; Boldyreva E; Shalaev E
    J Pharm Sci; 2016 Jul; 105(7):2129-38. PubMed ID: 27287516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Freezing-induced protein aggregation - Role of pH shift and potential mitigation strategies.
    Thorat AA; Munjal B; Geders TW; Suryanarayanan R
    J Control Release; 2020 Jul; 323():591-599. PubMed ID: 32335158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?
    Vetráková Ľ; Vykoukal V; Heger D
    Int J Pharm; 2017 Sep; 530(1-2):316-325. PubMed ID: 28779984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent.
    Chatterjee K; Shalaev EY; Suryanarayanan R
    J Pharm Sci; 2005 Apr; 94(4):798-808. PubMed ID: 15729706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of frozen aqueous solutions by low temperature X-ray powder diffractometry.
    Cavatur RK; Suryanarayanan R
    Pharm Res; 1998 Feb; 15(2):194-9. PubMed ID: 9523303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of buffer solutions for protein crystallization.
    Gosavi RA; Mueser TC; Schall CA
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):506-14. PubMed ID: 18453686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.