BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20302356)

  • 1. Is [FeO](2+) the active center also in iron containing zeolites? A density functional theory study of methane hydroxylation catalysis by Fe-ZSM-5 zeolite.
    Rosa A; Ricciardi G; Jan Baerends E
    Inorg Chem; 2010 Apr; 49(8):3866-80. PubMed ID: 20302356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.
    Zecchina A; Rivallan M; Berlier G; Lamberti C; Ricchiardi G
    Phys Chem Chem Phys; 2007 Jul; 9(27):3483-99. PubMed ID: 17612716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of alpha-oxygen formation and N2O decomposition on Fe/ZSM-5 catalysts by extraframework Al.
    Sun K; Zhang H; Xia H; Lian Y; Li Y; Feng Z; Ying P; Li C
    Chem Commun (Camb); 2004 Nov; (21):2480-1. PubMed ID: 15514825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane.
    Snyder BER; Böttger LH; Bols ML; Yan JJ; Rhoda HM; Jacobs AB; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4565-4570. PubMed ID: 29610304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface properties and catalytic performance of La(1-x)Sr(x)FeO(3) perovskite-type oxides for methane combustion.
    Wang CH; Chen CL; Weng HS
    Chemosphere; 2004 Dec; 57(9):1131-8. PubMed ID: 15504472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the presence of Fe(IV) in Fe-ZSM-5 and FeSrO3-x --unequivocal detection of the 3d4 spin system by resonant inelastic X-ray scattering.
    Pirngruber GD; Grunwaldt JD; van Bokhoven JA; Kalytta A; Reller A; Safonova OV; Glatzel P
    J Phys Chem B; 2006 Sep; 110(37):18104-7. PubMed ID: 16970419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).
    Kröcher O; Brandenberger S
    Chimia (Aarau); 2012; 66(9):687-93. PubMed ID: 23211727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+).
    Gopakumar G; Belanzoni P; Baerends EJ
    Inorg Chem; 2012 Jan; 51(1):63-75. PubMed ID: 22221279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.
    Adebajo MO; Long MA; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Investigation of Methane Hydroxylation over Isoelectronic [FeO]
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Inorg Chem; 2017 Sep; 56(17):10370-10380. PubMed ID: 28809113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites.
    Chen A; Ma X; Sun H
    J Hazard Mater; 2008 Aug; 156(1-3):568-75. PubMed ID: 18243544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonradical mechanism for methane hydroxylation by iron-oxo complexes.
    Yoshizawa K
    Acc Chem Res; 2006 Jun; 39(6):375-82. PubMed ID: 16784215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between the geometric and electronic structures and reactivities of [FeNO]7 and [FeO2]8 complexes: a density functional theory study.
    Schenk G; Pau MY; Solomon EI
    J Am Chem Soc; 2004 Jan; 126(2):505-15. PubMed ID: 14719948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.
    Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA
    J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into CH(4) formation in iron-catalyzed Fischer-Tropsch synthesis.
    Huo CF; Li YW; Wang J; Jiao H
    J Am Chem Soc; 2009 Oct; 131(41):14713-21. PubMed ID: 19780531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propene poisoning on three typical Fe-zeolites for SCR of NOχ with NH₃: from mechanism study to coating modified architecture.
    Ma L; Li J; Cheng Y; Lambert CK; Fu L
    Environ Sci Technol; 2012 Feb; 46(3):1747-54. PubMed ID: 22239740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinetic study of the reactions FeO+ + O, Fe+.N2 + O, Fe+.O2 + O and FeO+ + CO: implications for sporadic E layers in the upper atmosphere.
    Woodcock KR; Vondrak T; Meech SR; Plane JM
    Phys Chem Chem Phys; 2006 Apr; 8(15):1812-21. PubMed ID: 16633666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.