These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

19 related articles for article (PubMed ID: 20302446)

  • 1. Production and stability of cultured red blood cells depends on the concentration of cholesterol in culture medium.
    Claessen MJAG; Yagci N; Fu K; Brandsma E; Kersten MJ; von Lindern M; van den Akker E
    Sci Rep; 2024 Jul; 14(1):15592. PubMed ID: 38971841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell generation by three-dimensional aggregate cultivation of late erythroblasts.
    Lee E; Han SY; Choi HS; Chun B; Hwang B; Baek EJ
    Tissue Eng Part A; 2015 Feb; 21(3-4):817-28. PubMed ID: 25314917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vitro stem cell derived red blood cells for transfusion: are we there yet?
    Kim HO
    Yonsei Med J; 2014 Mar; 55(2):304-9. PubMed ID: 24532496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells.
    Baek EJ; Kim HS; Kim S; Jin H; Choi TY; Kim HO
    Transfusion; 2008 Oct; 48(10):2235-45. PubMed ID: 18673341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stroma-free mass production of clinical-grade red blood cells (RBCs) by using poloxamer 188 as an RBC survival enhancer.
    Baek EJ; Kim HS; Kim JH; Kim NJ; Kim HO
    Transfusion; 2009 Nov; 49(11):2285-95. PubMed ID: 19602217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro proliferation and differentiation of human CD34+ cells from peripheral blood into mature red blood cells with two different cell culture systems.
    Dorn I; Lazar-Karsten P; Boie S; Ribbat J; Hartwig D; Driller B; Kirchner H; Schlenke P
    Transfusion; 2008 Jun; 48(6):1122-32. PubMed ID: 18298595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions.
    Han Y; Wang X; Dai H; Li S
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4616-22. PubMed ID: 22860897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale production of embryonic red blood cells from human embryonic stem cells.
    Olivier EN; Qiu C; Velho M; Hirsch RE; Bouhassira EE
    Exp Hematol; 2006 Dec; 34(12):1635-42. PubMed ID: 17157159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of red blood cells in suspension by electrostatic interactions with culture plates.
    Baek EJ; You J; Kim MS; Lee SY; Cho SJ; Kim E; Kim HO
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1325-34. PubMed ID: 20302446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell population dynamics.
    Higgins JM
    Clin Lab Med; 2015 Mar; 35(1):43-57. PubMed ID: 25676371
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 1.