These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20302821)

  • 1. The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research.
    Talbot K
    Prog Brain Res; 2009; 179():87-94. PubMed ID: 20302821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia.
    Hattori S; Murotani T; Matsuzaki S; Ishizuka T; Kumamoto N; Takeda M; Tohyama M; Yamatodani A; Kunugi H; Hashimoto R
    Biochem Biophys Res Commun; 2008 Aug; 373(2):298-302. PubMed ID: 18555792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral characterization of dysbindin-1 deficient sandy mice.
    Bhardwaj SK; Baharnoori M; Sharif-Askari B; Kamath A; Williams S; Srivastava LK
    Behav Brain Res; 2009 Feb; 197(2):435-41. PubMed ID: 18984010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia.
    Feng YQ; Zhou ZY; He X; Wang H; Guo XL; Hao CJ; Guo Y; Zhen XC; Li W
    Schizophr Res; 2008 Dec; 106(2-3):218-28. PubMed ID: 18774265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia.
    Takao K; Toyama K; Nakanishi K; Hattori S; Takamura H; Takeda M; Miyakawa T; Hashimoto R
    Mol Brain; 2008 Oct; 1():11. PubMed ID: 18945333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High dopamine turnover in the brains of Sandy mice.
    Murotani T; Ishizuka T; Hattori S; Hashimoto R; Matsuzaki S; Yamatodani A
    Neurosci Lett; 2007 Jun; 421(1):47-51. PubMed ID: 17548156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: an in vivo microdialysis study.
    Nagai T; Kitahara Y; Shiraki A; Hikita T; Taya S; Kaibuchi K; Yamada K
    Neurosci Lett; 2010 Feb; 470(2):134-8. PubMed ID: 20045719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Risk genes for schizophrenia and neuronal plasticity: molecular target for antipsychotic discovery].
    Hashimoto R; Yasuda Y; Ohi K; Fukumoto M; Yamamori H; Takeda M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2010 Jun; 30(3):103-7. PubMed ID: 20666140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single point mutation on the gene encoding dysbindin results in recognition deficits.
    Chang EH; Fernando K; Yeung LWE; Barbari K; Chandon TS; Malhotra AK
    Genes Brain Behav; 2018 Jun; 17(5):e12449. PubMed ID: 29227583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurobehavioral abnormalities in the dysbindin-1 mutant, sandy, on a C57BL/6J genetic background.
    Cox MM; Tucker AM; Tang J; Talbot K; Richer DC; Yeh L; Arnold SE
    Genes Brain Behav; 2009 Jun; 8(4):390-7. PubMed ID: 19220483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in the BLOC-1 subunits dysbindin and muted generate divergent and dosage-dependent phenotypes.
    Larimore J; Zlatic SA; Gokhale A; Tornieri K; Singleton KS; Mullin AP; Tang J; Talbot K; Faundez V
    J Biol Chem; 2014 May; 289(20):14291-300. PubMed ID: 24713699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constant light uncovers behavioral effects of a mutation in the schizophrenia risk gene Dtnbp1 in mice.
    Bhardwaj SK; Stojkovic K; Kiessling S; Srivastava LK; Cermakian N
    Behav Brain Res; 2015 May; 284():58-68. PubMed ID: 25677649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mice with dopaminergic neuron-specific deletion of DTNBP-1 gene show blunted nucleus accumbens dopamine release and associated behaviors.
    Bhardwaj SK; Cui Q; Moquin L; Gratton A; Giros B; Srivastava LK
    Neuropharmacology; 2021 Feb; 184():108440. PubMed ID: 33340529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain.
    Weickert CS; Straub RE; McClintock BW; Matsumoto M; Hashimoto R; Hyde TM; Herman MM; Weinberger DR; Kleinman JE
    Arch Gen Psychiatry; 2004 Jun; 61(6):544-55. PubMed ID: 15184234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein.
    Hikita T; Taya S; Fujino Y; Taneichi-Kuroda S; Ohta K; Tsuboi D; Shinoda T; Kuroda K; Funahashi Y; Uraguchi-Asaki J; Hashimoto R; Kaibuchi K
    J Neurochem; 2009 Sep; 110(5):1567-74. PubMed ID: 19573021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release.
    Chen XW; Feng YQ; Hao CJ; Guo XL; He X; Zhou ZY; Guo N; Huang HP; Xiong W; Zheng H; Zuo PL; Zhang CX; Li W; Zhou Z
    J Cell Biol; 2008 Jun; 181(5):791-801. PubMed ID: 18504299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct interaction of Dysbindin with the AP-3 complex via its mu subunit.
    Taneichi-Kuroda S; Taya S; Hikita T; Fujino Y; Kaibuchi K
    Neurochem Int; 2009 Jun; 54(7):431-8. PubMed ID: 19428785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients--support for the glutamate hypothesis of schizophrenias.
    Fallgatter AJ; Ehlis AC; Herrmann MJ; Hohoff C; Reif A; Freitag CM; Deckert J
    Genes Brain Behav; 2010 Jul; 9(5):489-97. PubMed ID: 20180862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional neuroimaging phenotypes in dysbindin mutant mice.
    Lutkenhoff E; Karlsgodt KH; Gutman B; Stein JL; Thompson PM; Cannon TD; Jentsch JD
    Neuroimage; 2012 Aug; 62(1):120-9. PubMed ID: 22584233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to Circadian Disruption During Adolescence Interacts With a Genetic Risk Factor to Modify Schizophrenia-relevant Behaviors in a Sex-dependent Manner.
    Cloutier MÈ; Srivastava LK; Cermakian N
    J Biol Rhythms; 2022 Dec; 37(6):655-672. PubMed ID: 36168739
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.