BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20302916)

  • 1. The potential role of ubiquitin c-terminal hydrolases in oncogenesis.
    Fang Y; Fu D; Shen XZ
    Biochim Biophys Acta; 2010 Aug; 1806(1):1-6. PubMed ID: 20302916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications.
    Fang Y; Shen X
    Cancer Metastasis Rev; 2017 Dec; 36(4):669-682. PubMed ID: 29080080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes.
    Yin ST; Huang H; Zhang YH; Zhou ZR; Song AX; Hong FS; Hu HY
    Biochem Biophys Res Commun; 2011 Dec; 416(1-2):76-9. PubMed ID: 22086173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitin dimers control the hydrolase activity of UCH-L3.
    Setsuie R; Sakurai M; Sakaguchi Y; Wada K
    Neurochem Int; 2009; 54(5-6):314-21. PubMed ID: 19154770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain.
    Nishio K; Kim SW; Kawai K; Mizushima T; Yamane T; Hamazaki J; Murata S; Tanaka K; Morimoto Y
    Biochem Biophys Res Commun; 2009 Dec; 390(3):855-60. PubMed ID: 19836345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains.
    Zhou ZR; Zhang YH; Liu S; Song AX; Hu HY
    Biochem J; 2012 Jan; 441(1):143-9. PubMed ID: 21851340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin Carboxyl-Terminal Hydrolases (UCHs): Potential Mediators for Cancer and Neurodegeneration.
    Sharma A; Liu H; Tobar-Tosse F; Chand Dakal T; Ludwig M; Holz FG; Loeffler KU; Wüllner U; Herwig-Carl MC
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1.
    Yao T; Song L; Xu W; DeMartino GN; Florens L; Swanson SK; Washburn MP; Conaway RC; Conaway JW; Cohen RE
    Nat Cell Biol; 2006 Sep; 8(9):994-1002. PubMed ID: 16906146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes.
    Dang LC; Melandri FD; Stein RL
    Biochemistry; 1998 Feb; 37(7):1868-79. PubMed ID: 9485312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ubiquitin recognition of BAP1: understanding its enzymatic function.
    Hanpude P; Bhattacharya S; Kumar Singh A; Kanti Maiti T
    Biosci Rep; 2017 Oct; 37(5):. PubMed ID: 28935764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma.
    Fang Y; Mu J; Ma Y; Ma D; Fu D; Shen X
    Mol Cell Biochem; 2012 Jan; 359(1-2):59-66. PubMed ID: 21800051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex.
    Yao T; Song L; Jin J; Cai Y; Takahashi H; Swanson SK; Washburn MP; Florens L; Conaway RC; Cohen RE; Conaway JW
    Mol Cell; 2008 Sep; 31(6):909-17. PubMed ID: 18922472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel.
    Butterworth MB; Edinger RS; Ovaa H; Burg D; Johnson JP; Frizzell RA
    J Biol Chem; 2007 Dec; 282(52):37885-93. PubMed ID: 17967898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers.
    Bett JS; Ritorto MS; Ewan R; Jaffray EG; Virdee S; Chin JW; Knebel A; Kurz T; Trost M; Tatham MH; Hay RT
    Biochem J; 2015 Mar; 466(3):489-98. PubMed ID: 25489924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1.
    Meray RK; Lansbury PT
    J Biol Chem; 2007 Apr; 282(14):10567-75. PubMed ID: 17259170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes.
    Bheda A; Shackelford J; Pagano JS
    PLoS One; 2009 Aug; 4(8):e6764. PubMed ID: 19707515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization.
    Ventii KH; Devi NS; Friedrich KL; Chernova TA; Tighiouart M; Van Meir EG; Wilkinson KD
    Cancer Res; 2008 Sep; 68(17):6953-62. PubMed ID: 18757409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice.
    Kwon J; Wang YL; Setsuie R; Sekiguchi S; Sakurai M; Sato Y; Lee WW; Ishii Y; Kyuwa S; Noda M; Wada K; Yoshikawa Y
    Biol Reprod; 2004 Aug; 71(2):515-21. PubMed ID: 15084487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate recognition and catalysis by UCH-L1.
    Luchansky SJ; Lansbury PT; Stein RL
    Biochemistry; 2006 Dec; 45(49):14717-25. PubMed ID: 17144664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of catalytic cysteine of human deubiquitinase BAP1 triggers misfolding and aggregation in addition to functional loss.
    Puri S; Hsu SD
    Biochem Biophys Res Commun; 2022 Apr; 599():57-62. PubMed ID: 35176625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.