These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
824 related articles for article (PubMed ID: 20303584)
1. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584 [TBL] [Abstract][Full Text] [Related]
2. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700 [TBL] [Abstract][Full Text] [Related]
3. [PREPARATION AND PERFORMANCE RESEARCH OF SILK FIBROIN COLLAGEN BLEND SCAFFOLD]. Sun K; Nian Z; Xu C; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jul; 28(7):903-8. PubMed ID: 26462359 [TBL] [Abstract][Full Text] [Related]
4. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
5. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
6. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707 [TBL] [Abstract][Full Text] [Related]
7. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
8. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications. Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912 [TBL] [Abstract][Full Text] [Related]
11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
12. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Wang J; Yang Q; Cheng N; Tao X; Zhang Z; Sun X; Zhang Q Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():705-11. PubMed ID: 26838900 [TBL] [Abstract][Full Text] [Related]
13. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
14. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
15. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031 [TBL] [Abstract][Full Text] [Related]
16. Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Lu Q; Zhang X; Hu X; Kaplan DL Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684 [TBL] [Abstract][Full Text] [Related]
17. In vitro cartilage construct generation from silk fibroin- chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition. Agrawal P; Pramanik K; Biswas A; Ku Patra R J Biomed Mater Res A; 2018 Feb; 106(2):397-407. PubMed ID: 28960800 [TBL] [Abstract][Full Text] [Related]
18. Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Kim DK; In Kim J; Sim BR; Khang G Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():571-578. PubMed ID: 28576023 [TBL] [Abstract][Full Text] [Related]
19. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage. Sawatjui N; Limpaiboon T; Schrobback K; Klein T J Tissue Eng Regen Med; 2018 May; 12(5):1220-1229. PubMed ID: 29489056 [TBL] [Abstract][Full Text] [Related]