BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20303988)

  • 21. High-resolution boundary analysis during Arabidopsis thaliana flower development.
    Breuil-Broyer S; Morel P; de Almeida-Engler J; Coustham V; Negrutiu I; Trehin C
    Plant J; 2004 Apr; 38(1):182-92. PubMed ID: 15053771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes.
    Tabata R; Ikezaki M; Fujibe T; Aida M; Tian CE; Ueno Y; Yamamoto KT; Machida Y; Nakamura K; Ishiguro S
    Plant Cell Physiol; 2010 Jan; 51(1):164-75. PubMed ID: 20007966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy.
    Carles CC; Lertpiriyapong K; Reville K; Fletcher JC
    Genetics; 2004 Aug; 167(4):1893-903. PubMed ID: 15342527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pedicel development in Arabidopsis thaliana: contribution of vascular positioning and the role of the BREVIPEDICELLUS and ERECTA genes.
    Douglas SJ; Riggs CD
    Dev Biol; 2005 Aug; 284(2):451-63. PubMed ID: 16038894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reproductive meristem fates in Gerbera.
    Teeri TH; Uimari A; Kotilainen M; Laitinen R; Help H; Elomaa P; Albert VA
    J Exp Bot; 2006; 57(13):3445-55. PubMed ID: 17023564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem.
    Heisler MG; Ohno C; Das P; Sieber P; Reddy GV; Long JA; Meyerowitz EM
    Curr Biol; 2005 Nov; 15(21):1899-911. PubMed ID: 16271866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Arabidopsis thaliana FIMBRIATA PETIOLES gene, controlling cell division and growth in floral organs].
    Kavaĭ-ool UN; Ezhova TA
    Ontogenez; 2011; 42(2):151-8. PubMed ID: 21542344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Kanrar S; Bhattacharya M; Arthur B; Courtier J; Smith HM
    Plant J; 2008 Jun; 54(5):924-37. PubMed ID: 18298668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.
    Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA
    J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.
    Mandel MA; Gustafson-Brown C; Savidge B; Yanofsky MF
    Nature; 1992 Nov; 360(6401):273-7. PubMed ID: 1359429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary trends in the floral transcriptome: insights from one of the basalmost angiosperms, the water lily Nuphar advena (Nymphaeaceae).
    Yoo MJ; Chanderbali AS; Altman NS; Soltis PS; Soltis DE
    Plant J; 2010 Nov; 64(4):687-98. PubMed ID: 21070420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms and function of flower and inflorescence reversion.
    Tooke F; Ordidge M; Chiurugwi T; Battey N
    J Exp Bot; 2005 Oct; 56(420):2587-99. PubMed ID: 16131510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations.
    Ó'Maoiléidigh DS; Thomson B; Raganelli A; Wuest SE; Ryan PT; Kwaśniewska K; Carles CC; Graciet E; Wellmer F
    Plant J; 2015 Jul; 83(2):344-58. PubMed ID: 25990192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers.
    Krizek BA; Lewis MW; Fletcher JC
    Plant J; 2006 Feb; 45(3):369-83. PubMed ID: 16412084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches.
    Alvarez-Buylla ER; Azpeitia E; Barrio R; Benítez M; Padilla-Longoria P
    Semin Cell Dev Biol; 2010 Feb; 21(1):108-17. PubMed ID: 19922810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana.
    Chang YY; Chiu YF; Wu JW; Yang CH
    Plant Cell Physiol; 2009 Aug; 50(8):1425-38. PubMed ID: 19541596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates.
    Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2015 May; 9():20. PubMed ID: 25967891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis.
    Mendoza L; Thieffry D; Alvarez-Buylla ER
    Bioinformatics; 1999; 15(7-8):593-606. PubMed ID: 10487867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signaling and transcriptional control of reproductive development in Arabidopsis.
    Ge X; Chang F; Ma H
    Curr Biol; 2010 Nov; 20(22):R988-97. PubMed ID: 21093795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana.
    Chen D; Yan W; Fu LY; Kaufmann K
    Nat Commun; 2018 Oct; 9(1):4534. PubMed ID: 30382087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.