BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20303988)

  • 41. [Determination of type and spatial pattern formation of flower organs: dynamic model of development].
    Skriabin KG; Alekseev DV; Ezhova TA; Kozlov VN; Kudriavtsev VB; Nosov MV; Penin AA; Chub VV; Shestakov SV; Shul'ga OA
    Izv Akad Nauk Ser Biol; 2006; (6):645-59. PubMed ID: 17168461
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Paf1c defects challenge the robustness of flower meristem termination in
    Fal K; Cortes M; Liu M; Collaudin S; Das P; Hamant O; Trehin C
    Development; 2019 Oct; 146(20):. PubMed ID: 31540913
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial dynamics of floral organ formation.
    Cortes-Poza Y; Padilla-Longoria P; Alvarez-Buylla E
    J Theor Biol; 2018 Oct; 454():30-40. PubMed ID: 29857084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative transcriptional profiling provides insights into the evolution and development of the zygomorphic flower of Vicia sativa (Papilionoideae).
    Liu Z; Ma L; Nan Z; Wang Y
    PLoS One; 2013; 8(2):e57338. PubMed ID: 23437373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis.
    Zhang F; Liu X; Zhang A; Jiang Z; Chen L; Zhang X
    BMC Plant Biol; 2019 Jan; 19(1):11. PubMed ID: 30616516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flower development as an interplay between dynamical physical fields and genetic networks.
    Barrio RÁ; Hernández-Machado A; Varea C; Romero-Arias JR; Alvarez-Buylla E
    PLoS One; 2010 Oct; 5(10):e13523. PubMed ID: 21048956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene networks controlling Arabidopsis thaliana flower development.
    Ó'Maoiléidigh DS; Graciet E; Wellmer F
    New Phytol; 2014 Jan; 201(1):16-30. PubMed ID: 23952532
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gene Regulatory Network Dynamical Logical Models for Plant Development.
    Dávila-Velderrain J; Caldú-Primo JL; Martínez-García JC; Álvarez-Buylla Roces ME
    Methods Mol Biol; 2022; 2395():59-77. PubMed ID: 34822149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correlation between number and position of floral organs in Arabidopsis.
    Penin AA; Logacheva MD
    Ann Bot; 2011 Jul; 108(1):123-31. PubMed ID: 21693667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network.
    Henry A; Monéger F; Samal A; Martin OC
    Mol Biosyst; 2013 Jul; 9(7):1726-35. PubMed ID: 23579205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge.
    Kaneko K
    Bioessays; 2011 Jun; 33(6):403-13. PubMed ID: 21538414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene networks controlling petal organogenesis.
    Huang T; Irish VF
    J Exp Bot; 2016 Jan; 67(1):61-8. PubMed ID: 26428062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of discrete bioregulatory networks using symbolic steady states.
    Siebert H
    Bull Math Biol; 2011 Apr; 73(4):873-98. PubMed ID: 21170598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The LEPIDIUM-LIKE gene determines stem cell activity during formation of petals and stamens in Arabidopsis thaliana flowers.
    Penin AA; Logacheva MD
    Dokl Biol Sci; 2007; 412():56-7. PubMed ID: 17515044
    [No Abstract]   [Full Text] [Related]  

  • 55. A floral induction system for the study of early Arabidopsis flower development.
    O'Maoiléidigh DS; Wellmer F
    Methods Mol Biol; 2014; 1110():307-14. PubMed ID: 24395265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche.
    Azpeitia E; Benítez M; Vega I; Villarreal C; Alvarez-Buylla ER
    BMC Syst Biol; 2010 Oct; 4():134. PubMed ID: 20920363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic and phenotypic analyses of carpel development in Arabidopsis.
    Balanzà V; Ballester P; Colombo M; Fourquin C; Martínez-Fernández I; Ferrándiz C
    Methods Mol Biol; 2014; 1110():231-49. PubMed ID: 24395260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic network modelling to understand flowering transition and floral patterning.
    Davila-Velderrain J; Martinez-Garcia JC; Alvarez-Buylla ER
    J Exp Bot; 2016 Apr; 67(9):2565-72. PubMed ID: 27025221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model.
    Benítez M; Espinosa-Soto C; Padilla-Longoria P; Alvarez-Buylla ER
    BMC Syst Biol; 2008 Nov; 2():98. PubMed ID: 19014692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis.
    Voelckel C; Borevitz JO; Kramer EM; Hodges SA
    PLoS One; 2010 Mar; 5(3):e9735. PubMed ID: 20352114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.