These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20303988)

  • 61. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control.
    Refahi Y; Zardilis A; Michelin G; Wightman R; Leggio B; Legrand J; Faure E; Vachez L; Armezzani A; Risson AE; Zhao F; Das P; Prunet N; Meyerowitz EM; Godin C; Malandain G; Jönsson H; Traas J
    Dev Cell; 2021 Feb; 56(4):540-556.e8. PubMed ID: 33621494
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A method for the generation of standardized qualitative dynamical systems of regulatory networks.
    Mendoza L; Xenarios I
    Theor Biol Med Model; 2006 Mar; 3():13. PubMed ID: 16542429
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hormones and Flower Development in Arabidopsis.
    Zúñiga-Mayo VM; Durán-Medina Y; Marsch-Martínez N; de Folter S
    Methods Mol Biol; 2023; 2686():111-127. PubMed ID: 37540356
    [TBL] [Abstract][Full Text] [Related]  

  • 64. General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks.
    Villarreal C; Padilla-Longoria P; Alvarez-Buylla ER
    Phys Rev Lett; 2012 Sep; 109(11):118102. PubMed ID: 23005679
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Computational modeling of the regulatory network organizing the wound response in Arabidopsis thaliana.
    Kim JT; Camargo A; Devoto A; Moulton V; Turner J
    Artif Life; 2012; 18(4):445-60. PubMed ID: 22938558
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An estimation method for a cellular-state-specific gene regulatory network along tree-structured gene expression profiles.
    Araki R; Seno S; Takenaka Y; Matsuda H
    Gene; 2013 Apr; 518(1):17-25. PubMed ID: 23266644
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The regulatory network that controls the differentiation of T lymphocytes.
    Martínez-Sosa P; Mendoza L
    Biosystems; 2013 Aug; 113(2):96-103. PubMed ID: 23743337
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Relative stability of network states in Boolean network models of gene regulation in development.
    Zhou JX; Samal A; d'Hérouël AF; Price ND; Huang S
    Biosystems; 2016; 142-143():15-24. PubMed ID: 26965665
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The flowering transition pathways converge into a complex gene regulatory network that underlies the phase changes of the shoot apical meristem in
    Chávez-Hernández EC; Quiroz S; García-Ponce B; Álvarez-Buylla ER
    Front Plant Sci; 2022; 13():852047. PubMed ID: 36017258
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.
    Ortiz-Gutiérrez E; García-Cruz K; Azpeitia E; Castillo A; Sánchez Mde L; Álvarez-Buylla ER
    PLoS Comput Biol; 2015 Sep; 11(9):e1004486. PubMed ID: 26340681
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Packaging the male germline in plants.
    Feng X; Dickinson HG
    Trends Genet; 2007 Oct; 23(10):503-10. PubMed ID: 17825943
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Automaton models of computational genetic regulatory networks with combinatorial gene-protein interactions.
    Chen PC; Weng Y
    Biosystems; 2011 Oct; 106(1):19-27. PubMed ID: 21723368
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Continuous-time modeling of cell fate determination in Arabidopsis flowers.
    van Mourik S; van Dijk AD; de Gee M; Immink RG; Kaufmann K; Angenent GC; van Ham RC; Molenaar J
    BMC Syst Biol; 2010 Jul; 4():101. PubMed ID: 20649974
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pattern formation during early floral development.
    Vaddepalli P; Scholz S; Schneitz K
    Curr Opin Genet Dev; 2015 Jun; 32():16-23. PubMed ID: 25687790
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kolmogorov complexity of epithelial pattern formation: the role of regulatory network configuration.
    Flann NS; Mohamadlou H; Podgorski GJ
    Biosystems; 2013 May; 112(2):131-8. PubMed ID: 23499820
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inducible Promoter Systems for Gene Perturbation Experiments in Arabidopsis.
    Thomson B; Graciet E; Wellmer F
    Methods Mol Biol; 2017; 1629():15-25. PubMed ID: 28623576
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Flower development.
    Alvarez-Buylla ER; Benítez M; Corvera-Poiré A; Chaos Cador A; de Folter S; Gamboa de Buen A; Garay-Arroyo A; García-Ponce B; Jaimes-Miranda F; Pérez-Ruiz RV; Piñeyro-Nelson A; Sánchez-Corrales YE
    Arabidopsis Book; 2010; 8():e0127. PubMed ID: 22303253
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Epigenetic forest and flower morphogenesis.
    Perez-Buendia JR; Cortes-Poza Y; Padilla-Longoria P
    Comput Biol Chem; 2022 Jun; 98():107667. PubMed ID: 35339093
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Attraction basins as gauges of robustness against boundary conditions in biological complex systems.
    Demongeot J; Goles E; Morvan M; Noual M; Sené S
    PLoS One; 2010 Aug; 5(8):e11793. PubMed ID: 20700525
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A model comparison study of the flowering time regulatory network in Arabidopsis.
    Wang CC; Chang PC; Ng KL; Chang CM; Sheu PC; Tsai JJ
    BMC Syst Biol; 2014 Feb; 8():15. PubMed ID: 24513114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.