These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 20304)
1. A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase). Wilson MT; Ranson RJ; Masiakowski P; Czarnecka E; Brunori M Eur J Biochem; 1977 Jul; 77(1):193-9. PubMed ID: 20304 [TBL] [Abstract][Full Text] [Related]
2. Cyanide binding to ferrous and ferric microperoxidase-11. Ascenzi P; Sbardella D; Santucci R; Coletta M J Biol Inorg Chem; 2016 Jul; 21(4):511-22. PubMed ID: 27229515 [TBL] [Abstract][Full Text] [Related]
3. Hemes and hemeproteins, 2: The pH-dependent equilibria of microperoxidase-8 and characterization of the coordination sphere of Fe(III). Baldwin DA; Marques HM; Pratt JM J Inorg Biochem; 1986 Aug; 27(4):245-54. PubMed ID: 3018152 [TBL] [Abstract][Full Text] [Related]
4. Cyanide binding to the cytochrome c ferric heme octapeptide. A model for anion binding to the active site of high spin ferric heme proteins. Blumenthal DC; Kassner RJ J Biol Chem; 1980 Jun; 255(12):5859-63. PubMed ID: 6247350 [TBL] [Abstract][Full Text] [Related]
5. Azide, cyanide, fluoride, imidazole and pyridine binding to ferric and ferrous native horse heart cytochrome c and to its carboxymethylated derivative: a comparative study. Viola F; Aime S; Coletta M; Desideri A; Fasano M; Paoletti S; Tarricone C; Ascenzi P J Inorg Biochem; 1996 May; 62(3):213-22. PubMed ID: 8627283 [TBL] [Abstract][Full Text] [Related]
6. Properties of modified cytochromes. I. Equilibrium and kinetics of the pH-dependent transition in carboxymethylated horse heart cytochrome c. Brunori M; Wilson MT; Antonini E J Biol Chem; 1972 Oct; 247(19):6076-81. PubMed ID: 4346803 [No Abstract] [Full Text] [Related]
7. On the electron transfer reaction between ferricytochrome c and ferrohexacyanide in the pH range 5 to 7. Zabinski RM; Tatti K; Czerlinski GH J Biol Chem; 1974 Oct; 249(19):6125-9. PubMed ID: 4371032 [No Abstract] [Full Text] [Related]
8. Binding of cyanide to cytochrome c' from Chromatium vinosum. Kassner RJ; Kykta MG; Cusanovich MA Biochim Biophys Acta; 1985 Sep; 831(1):155-8. PubMed ID: 2994739 [TBL] [Abstract][Full Text] [Related]
9. A study of the electron transfer properties of the heme undecapeptide from cytochrome c by 1H nmr spectroscopy. Kimura K; Peterson J; Wilson M; Cookson DJ; Williams RJ J Inorg Biochem; 1981 Aug; 15(1):11-25. PubMed ID: 6268745 [TBL] [Abstract][Full Text] [Related]
10. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c. Ikeda-Saito M; Iizuka T Biochim Biophys Acta; 1975 Jun; 393(2):335-42. PubMed ID: 167834 [TBL] [Abstract][Full Text] [Related]
11. Reductive nitrosylation of ferric microperoxidase-11. Ascenzi P; De Simone G; Sbardella D; Coletta M J Biol Inorg Chem; 2019 Feb; 24(1):21-29. PubMed ID: 30390140 [TBL] [Abstract][Full Text] [Related]
12. Magnetic studies on the ferri-haem undecapeptide of cytochrome c. Jehanli AM; Stotter DA; Wilson MT Eur J Biochem; 1976 Dec; 71(2):613-6. PubMed ID: 12973 [TBL] [Abstract][Full Text] [Related]
13. High-valent intermediates in the reaction of N alpha-acetyl microperoxidase-8 with hydrogen peroxide: models for compounds 0, I and II of horseradish peroxidase. Wang JS; Baek HK; Van Wart HE Biochem Biophys Res Commun; 1991 Sep; 179(3):1320-4. PubMed ID: 1656947 [TBL] [Abstract][Full Text] [Related]
14. Hemes and hemoproteins. 3. The reaction of microperoxidase-8 with cyanide: comparison with aquocobalamin and hemoproteins. Marques HM; Baldwin DA; Pratt JM J Inorg Biochem; 1987 Jan; 29(1):77-91. PubMed ID: 3031209 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of ligand-binding and oxidation-reduction reactions of cytochrome c from horse heart and Candida krusei. Creutz C; Sutin N J Biol Chem; 1974 Nov; 249(21):6788-95. PubMed ID: 4371651 [No Abstract] [Full Text] [Related]
16. Mechanisms of the reactions of cytochrome c. Rate and equilibrium constants for ligand binding to horse heart ferricytochrome c. Sutin N; Yandell JK J Biol Chem; 1972 Nov; 247(21):6932-6. PubMed ID: 4343163 [No Abstract] [Full Text] [Related]
17. NMR studies of hemoproteins. VI. Acid-base transitions of ferric myoglobin and its imidazole complex. Iizuka T; Morishima I Biochim Biophys Acta; 1975 Jul; 400(1):143-53. PubMed ID: 238653 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and spectroscopic evidence for different forms of ferric cytochrome c at very low ionic strength and neutral pH. Goldkorn T; Schejter A FEBS Lett; 1977 Mar; 75(1):44-6. PubMed ID: 15867 [No Abstract] [Full Text] [Related]
19. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies. Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of the reaction of hydrated electrons with ferrocytochrome c. Butler J; De Kok J; De Weille JR; Koppenol WH; Braams R Biochim Biophys Acta; 1977 Feb; 459(2):207-15. PubMed ID: 13826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]