BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 20304487)

  • 1. Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations.
    Grumelli C; Corradini I; Matteoli M; Verderio C
    Cell Calcium; 2010 May; 47(5):419-24. PubMed ID: 20304487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization.
    Verderio C; Pozzi D; Pravettoni E; Inverardi F; Schenk U; Coco S; Proux-Gillardeaux V; Galli T; Rossetto O; Frassoni C; Matteoli M
    Neuron; 2004 Feb; 41(4):599-610. PubMed ID: 14980208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ.
    Frassoni C; Inverardi F; Coco S; Ortino B; Grumelli C; Pozzi D; Verderio C; Matteoli M
    Neuroscience; 2005; 131(4):813-23. PubMed ID: 15749336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation kinetics of voltage-gated calcium channels in glutamatergic neurons are influenced by SNAP-25.
    Condliffe SB; Matteoli M
    Channels (Austin); 2011; 5(4):304-7. PubMed ID: 21558797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neurons.
    Tafoya LC; Shuttleworth CW; Yanagawa Y; Obata K; Wilson MC
    BMC Neurosci; 2008 Oct; 9():105. PubMed ID: 18959796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.
    Meng J; Wang J; Lawrence G; Dolly JO
    J Cell Sci; 2007 Aug; 120(Pt 16):2864-74. PubMed ID: 17666428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of depolarization and Ca2+-evoked secretion in Xenopus oocytes monitored by membrane capacitance.
    Cohen R; Schmitt BM; Atlas D
    Methods Mol Biol; 2008; 440():269-82. PubMed ID: 18369953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traffic of botulinum toxins A and E in excitatory and inhibitory neurons.
    Verderio C; Grumelli C; Raiteri L; Coco S; Paluzzi S; Caccin P; Rossetto O; Bonanno G; Montecucco C; Matteoli M
    Traffic; 2007 Feb; 8(2):142-53. PubMed ID: 17241445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity of botulinum neurotoxins reveals a direct role of syntaxin 1 and SNAP-25 in neuron survival.
    Peng L; Liu H; Ruan H; Tepp WH; Stoothoff WH; Brown RH; Johnson EA; Yao WD; Zhang SC; Dong M
    Nat Commun; 2013; 4():1472. PubMed ID: 23403573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the light chain subcellular localization an important factor in botulinum toxin duration of action?
    Fernández-Salas E; Ho H; Garay P; Steward LE; Aoki KR
    Mov Disord; 2004 Mar; 19 Suppl 8():S23-34. PubMed ID: 15027051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex.
    Otto H; Hanson PI; Chapman ER; Blasi J; Jahn R
    Biochem Biophys Res Commun; 1995 Jul; 212(3):945-52. PubMed ID: 7626135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity.
    Xu T; Binz T; Niemann H; Neher E
    Nat Neurosci; 1998 Jul; 1(3):192-200. PubMed ID: 10195143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of synaptosomal-associated protein SNAP-25 in endocrine anterior pituitary cells.
    Aguado F; Majó G; Ruiz-Montasell B; Canals JM; Casanova A; Marsal J; Blasi J
    Eur J Cell Biol; 1996 Apr; 69(4):351-9. PubMed ID: 8741217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synaptophysin/synaptobrevin complex dissociates independently of neuroexocytosis.
    Reisinger C; Yelamanchili SV; Hinz B; Mitter D; Becher A; Bigalke H; Ahnert-Hilger G
    J Neurochem; 2004 Jul; 90(1):1-8. PubMed ID: 15198661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release.
    Pozzi D; Corradini I; Matteoli M
    Neuroscience; 2019 Nov; 420():72-78. PubMed ID: 30476527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dominant-negative variant of SNAP-23 decreases the cell surface expression of the neuronal glutamate transporter EAAC1 by slowing constitutive delivery.
    Fournier KM; Robinson MB
    Neurochem Int; 2006; 48(6-7):596-603. PubMed ID: 16516346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into a basis for incomplete inhibition by botulinum toxin A of Ca2+-evoked exocytosis from permeabilised chromaffin cells.
    Lawrence GW; Foran P; Oliver Dolly J
    Toxicology; 2002 Dec; 181-182():249-53. PubMed ID: 12505320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of SNAP-25 at Ser187 mediates enhancement of exocytosis by a phorbol ester in INS-1 cells.
    Shu Y; Liu X; Yang Y; Takahashi M; Gillis KD
    J Neurosci; 2008 Jan; 28(1):21-30. PubMed ID: 18171919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy.
    Durham PL; Cady R; Cady R
    Headache; 2004 Jan; 44(1):35-42; discussion 42-3. PubMed ID: 14979881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary cultures of embryonic chicken neurons for sensitive cell-based assay of botulinum neurotoxin: implications for therapeutic discovery.
    Stahl AM; Ruthel G; Torres-Melendez E; Kenny TA; Panchal RG; Bavari S
    J Biomol Screen; 2007 Apr; 12(3):370-7. PubMed ID: 17332092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.