These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 20304652)
1. Age-related changes in mechanical and metabolic energy during typical gait. Van de Walle P; Desloovere K; Truijen S; Gosselink R; Aerts P; Hallemans A Gait Posture; 2010 Apr; 31(4):495-501. PubMed ID: 20304652 [TBL] [Abstract][Full Text] [Related]
2. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Mian OS; Thom JM; Ardigò LP; Narici MV; Minetti AE Acta Physiol (Oxf); 2006 Feb; 186(2):127-39. PubMed ID: 16497190 [TBL] [Abstract][Full Text] [Related]
3. Mechanical energy estimation during walking: validity and sensitivity in typical gait and in children with cerebral palsy. Van de Walle P; Hallemans A; Schwartz M; Truijen S; Gosselink R; Desloovere K Gait Posture; 2012 Feb; 35(2):231-7. PubMed ID: 21962844 [TBL] [Abstract][Full Text] [Related]
4. Walking energy expenditure in able-bodied individuals: a comparison of common measures of energy efficiency. Thomas SS; Buckon CE; Schwartz MH; Sussman MD; Aiona MD Gait Posture; 2009 Jun; 29(4):592-6. PubMed ID: 19188067 [TBL] [Abstract][Full Text] [Related]
5. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children. Frost G; Bar-Or O; Dowling J; Dyson K J Sports Sci; 2002 Jun; 20(6):451-61. PubMed ID: 12137175 [TBL] [Abstract][Full Text] [Related]
6. Mechanical energy in toddler gait. A trade-off between economy and stability? Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514 [TBL] [Abstract][Full Text] [Related]
7. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207 [TBL] [Abstract][Full Text] [Related]
8. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents? Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657 [TBL] [Abstract][Full Text] [Related]
9. The energy cost for the step-to-step transition in amputee walking. Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343 [TBL] [Abstract][Full Text] [Related]
10. Quantification of energy expenditure during gait in children affected by cerebral palsy. Piccinini L; Cimolin V; Galli M; Berti M; Crivellini M; Turconi AC Eura Medicophys; 2007 Mar; 43(1):7-12. PubMed ID: 17072287 [TBL] [Abstract][Full Text] [Related]
11. Variability and minimum detectable change for walking energy efficiency variables in children with cerebral palsy. Thomas SS; Buckon CE; Schwartz MH; Russman BS; Sussman MD; Aiona MD Dev Med Child Neurol; 2009 Aug; 51(8):615-21. PubMed ID: 19627334 [TBL] [Abstract][Full Text] [Related]
12. The effect of lateral stabilization on walking in young and old adults. Dean JC; Alexander NB; Kuo AD IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687 [TBL] [Abstract][Full Text] [Related]
13. Reproducibility of energy cost of locomotion in ambulatory children with spina bifida. De Groot JF; Takken T; Schoenmakers MA; Tummers L; Vanhees L; Helders PJ Gait Posture; 2010 Feb; 31(2):159-63. PubMed ID: 19875289 [TBL] [Abstract][Full Text] [Related]
14. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153 [TBL] [Abstract][Full Text] [Related]
15. Mechanical work, energetic cost, and gait efficiency in children with cerebral palsy. van den Hecke A; Malghem C; Renders A; Detrembleur C; Palumbo S; Lejeune TM J Pediatr Orthop; 2007 Sep; 27(6):643-7. PubMed ID: 17717464 [TBL] [Abstract][Full Text] [Related]
16. Comparison of mechanical work and metabolic energy consumption during normal gait. Burdett RG; Skrinar GS; Simon SR J Orthop Res; 1983; 1(1):63-72. PubMed ID: 6679577 [TBL] [Abstract][Full Text] [Related]
17. Energy cost of walking: A comparison of two recognised methods for defining steady state in a group of unimpaired children and children with cerebral palsy. Plasschaert F; Jones K; Forward M Gait Posture; 2010 Apr; 31(4):537-9. PubMed ID: 20338764 [TBL] [Abstract][Full Text] [Related]
18. Center of mass motion and the effects of ankle bracing on metabolic cost during submaximal walking trials. Herndon SK; Bennett BC; Wolovick A; Filachek A; Gaesser GA; Weltman A; Abel MF J Orthop Res; 2006 Dec; 24(12):2170-5. PubMed ID: 17019702 [TBL] [Abstract][Full Text] [Related]
19. Methodological considerations for improving the reproducibility of walking efficiency outcomes in clinical gait studies. Brehm MA; Knol DL; Harlaar J Gait Posture; 2008 Feb; 27(2):196-201. PubMed ID: 17467276 [TBL] [Abstract][Full Text] [Related]
20. Metabolic cost and mechanical work for the step-to-step transition in walking after successful total ankle arthroplasty. Doets HC; Vergouw D; Veeger HE; Houdijk H Hum Mov Sci; 2009 Dec; 28(6):786-97. PubMed ID: 19596466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]