These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
4. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489 [TBL] [Abstract][Full Text] [Related]
5. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo. Liu J; Ernst SA; Gladycheva SE; Lee YY; Lentz SI; Ho CS; Li Q; Stuenkel EL J Biol Chem; 2004 Dec; 279(53):55924-36. PubMed ID: 15489225 [TBL] [Abstract][Full Text] [Related]
7. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements. Seitz A; Terjung S; Zimmermann T; Pepperkok R J Biomed Opt; 2012 Jan; 17(1):011010. PubMed ID: 22352644 [TBL] [Abstract][Full Text] [Related]
9. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition. Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469 [TBL] [Abstract][Full Text] [Related]
10. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859 [TBL] [Abstract][Full Text] [Related]
11. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Raicu V; Jansma DB; Miller RJ; Friesen JD Biochem J; 2005 Jan; 385(Pt 1):265-77. PubMed ID: 15352875 [TBL] [Abstract][Full Text] [Related]
12. Quantitative FRET imaging of leptin receptor oligomerization kinetics in single cells. Biener E; Charlier M; Ramanujan VK; Daniel N; Eisenberg A; Bjørbaek C; Herman B; Gertler A; Djiane J Biol Cell; 2005 Dec; 97(12):905-19. PubMed ID: 15771593 [TBL] [Abstract][Full Text] [Related]
13. Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. Gu Y; Di WL; Kelsell DP; Zicha D J Microsc; 2004 Aug; 215(Pt 2):162-73. PubMed ID: 15315503 [TBL] [Abstract][Full Text] [Related]
14. A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell. Azpiazu I; Gautam N J Biol Chem; 2004 Jun; 279(26):27709-18. PubMed ID: 15078878 [TBL] [Abstract][Full Text] [Related]
15. Biochemical and biophysical characterization of serotonin 5-HT2C receptor homodimers on the plasma membrane of living cells. Herrick-Davis K; Grinde E; Mazurkiewicz JE Biochemistry; 2004 Nov; 43(44):13963-71. PubMed ID: 15518545 [TBL] [Abstract][Full Text] [Related]
16. Improving the spectral analysis of Fluorescence Resonance Energy Transfer in live cells: application to interferon receptors and Janus kinases. Krause CD; Digioia G; Izotova LS; Pestka S Cytokine; 2013 Oct; 64(1):272-85. PubMed ID: 23796694 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence resonance energy transfer-based stoichiometry in living cells. Hoppe A; Christensen K; Swanson JA Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132 [TBL] [Abstract][Full Text] [Related]
18. Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor. Latif R; Graves P; Davies TF J Biol Chem; 2002 Nov; 277(47):45059-67. PubMed ID: 12223484 [TBL] [Abstract][Full Text] [Related]
19. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers. Patowary S; Pisterzi LF; Biener G; Holz JD; Oliver JA; Wells JW; Raicu V Biophys J; 2015 Apr; 108(7):1613-1622. PubMed ID: 25863053 [TBL] [Abstract][Full Text] [Related]
20. Ligand-Induced Coupling between Oligomers of the M Li Y; Shivnaraine RV; Huang F; Wells JW; Gradinaru CC Biophys J; 2018 Sep; 115(5):881-895. PubMed ID: 30131171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]