BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20304928)

  • 1. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer.
    Pisterzi LF; Jansma DB; Georgiou J; Woodside MJ; Chou JT; Angers S; Raicu V; Wells JW
    J Biol Chem; 2010 May; 285(22):16723-38. PubMed ID: 20304928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescence resonance energy transfer-based M2 muscarinic receptor sensor reveals rapid kinetics of allosteric modulation.
    Maier-Peuschel M; Frölich N; Dees C; Hommers LG; Hoffmann C; Nikolaev VO; Lohse MJ
    J Biol Chem; 2010 Mar; 285(12):8793-800. PubMed ID: 20083608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP.
    Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo.
    Liu J; Ernst SA; Gladycheva SE; Lee YY; Lentz SI; Ho CS; Li Q; Stuenkel EL
    J Biol Chem; 2004 Dec; 279(53):55924-36. PubMed ID: 15489225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements.
    Seitz A; Terjung S; Zimmermann T; Pepperkok R
    J Biomed Opt; 2012 Jan; 17(1):011010. PubMed ID: 22352644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
    Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW
    PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer.
    Raicu V; Jansma DB; Miller RJ; Friesen JD
    Biochem J; 2005 Jan; 385(Pt 1):265-77. PubMed ID: 15352875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative FRET imaging of leptin receptor oligomerization kinetics in single cells.
    Biener E; Charlier M; Ramanujan VK; Daniel N; Eisenberg A; Bjørbaek C; Herman B; Gertler A; Djiane J
    Biol Cell; 2005 Dec; 97(12):905-19. PubMed ID: 15771593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing.
    Gu Y; Di WL; Kelsell DP; Zicha D
    J Microsc; 2004 Aug; 215(Pt 2):162-73. PubMed ID: 15315503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescence resonance energy transfer-based sensor indicates that receptor access to a G protein is unrestricted in a living mammalian cell.
    Azpiazu I; Gautam N
    J Biol Chem; 2004 Jun; 279(26):27709-18. PubMed ID: 15078878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and biophysical characterization of serotonin 5-HT2C receptor homodimers on the plasma membrane of living cells.
    Herrick-Davis K; Grinde E; Mazurkiewicz JE
    Biochemistry; 2004 Nov; 43(44):13963-71. PubMed ID: 15518545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the spectral analysis of Fluorescence Resonance Energy Transfer in live cells: application to interferon receptors and Janus kinases.
    Krause CD; Digioia G; Izotova LS; Pestka S
    Cytokine; 2013 Oct; 64(1):272-85. PubMed ID: 23796694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor.
    Latif R; Graves P; Davies TF
    J Biol Chem; 2002 Nov; 277(47):45059-67. PubMed ID: 12223484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers.
    Patowary S; Pisterzi LF; Biener G; Holz JD; Oliver JA; Wells JW; Raicu V
    Biophys J; 2015 Apr; 108(7):1613-1622. PubMed ID: 25863053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-Induced Coupling between Oligomers of the M
    Li Y; Shivnaraine RV; Huang F; Wells JW; Gradinaru CC
    Biophys J; 2018 Sep; 115(5):881-895. PubMed ID: 30131171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.