BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 20305284)

  • 41. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding.
    Butler GS; Dean RA; Tam EM; Overall CM
    Mol Cell Biol; 2008 Aug; 28(15):4896-914. PubMed ID: 18505826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive Analysis of Protein N-Terminome by Guanidination of Terminal Amines.
    Sun M; Liang Y; Li Y; Yang K; Zhao B; Yuan H; Li X; Zhang X; Liang Z; Shan Y; Zhang L; Zhang Y
    Anal Chem; 2020 Jan; 92(1):567-572. PubMed ID: 31846294
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteomic discovery of protease substrates.
    Schilling O; Overall CM
    Curr Opin Chem Biol; 2007 Feb; 11(1):36-45. PubMed ID: 17194619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combination of SCX Fractionation and Charge-Reversal Derivatization Facilitates the Identification of Nontryptic Peptides in C-Terminomics.
    Kaleja P; Helbig AO; Tholey A
    J Proteome Res; 2019 Jul; 18(7):2954-2964. PubMed ID: 31195796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel MMP-9 substrates in cancer cells revealed by a label-free quantitative proteomics approach.
    Xu D; Suenaga N; Edelmann MJ; Fridman R; Muschel RJ; Kessler BM
    Mol Cell Proteomics; 2008 Nov; 7(11):2215-28. PubMed ID: 18596065
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integration of Two In-depth Quantitative Proteomics Approaches Determines the Kallikrein-related Peptidase 7 (KLK7) Degradome in Ovarian Cancer Cell Secretome.
    Silva LM; Kryza T; Stoll T; Hoogland C; Dong Y; Stephens CR; Hastie ML; Magdolen V; Kleifeld O; Gorman JJ; Clements JA
    Mol Cell Proteomics; 2019 May; 18(5):818-836. PubMed ID: 30705123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study.
    Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M
    J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Partially isobaric peptide termini labeling assisted proteome quantitation based on MS and MS/MS signals.
    Zhang S; Wu Q; Shan Y; Zhou Y; Zhang L; Zhang Y
    J Proteomics; 2015 Jan; 114():152-60. PubMed ID: 25434490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. No Substrate Left behind-Mining of Shotgun Proteomics Datasets Rescues Evidence of Proteolysis by SARS-CoV-2 3CL
    Bell PA; Overall CM
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Human Dental Pulp Proteome and N-Terminome: Levering the Unexplored Potential of Semitryptic Peptides Enriched by TAILS to Identify Missing Proteins in the Human Proteome Project in Underexplored Tissues.
    Eckhard U; Marino G; Abbey SR; Tharmarajah G; Matthew I; Overall CM
    J Proteome Res; 2015 Sep; 14(9):3568-82. PubMed ID: 26258467
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A protocol for analyzing the protein terminome of human cancer cell line culture supernatants.
    Tsumagari K; Chang CH; Ishihama Y
    STAR Protoc; 2021 Sep; 2(3):100682. PubMed ID: 34377995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isobaric protein and peptide quantification: perspectives and issues.
    Treumann A; Thiede B
    Expert Rev Proteomics; 2010 Oct; 7(5):647-53. PubMed ID: 20973638
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increasing the coverage of the N-terminome with LysN amino terminal enrichment (LATE).
    Hanna R; Rozenberg A; Lavy T; Kleifeld O
    Methods Enzymol; 2023; 686():1-28. PubMed ID: 37532396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. iTRAQ-Based Shotgun Proteomics Approach for Relative Protein Quantification.
    Núñez EV; Domont GB; Nogueira FCS
    Methods Mol Biol; 2017; 1546():267-274. PubMed ID: 27896776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CLIPPER: an add-on to the Trans-Proteomic Pipeline for the automated analysis of TAILS N-terminomics data.
    auf dem Keller U; Overall CM
    Biol Chem; 2012 Dec; 393(12):1477-83. PubMed ID: 23667905
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An SDS-PAGE based proteomic approach for N-terminome profiling.
    Kaushal P; Kwon Y; Ju S; Lee C
    Analyst; 2019 Nov; 144(23):7001-7009. PubMed ID: 31647066
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteolytic post-translational modification of proteins: proteomic tools and methodology.
    Rogers LD; Overall CM
    Mol Cell Proteomics; 2013 Dec; 12(12):3532-42. PubMed ID: 23887885
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Global Profiling of Proteolysis from the Mitochondrial Amino Terminome during Early Intrinsic Apoptosis Prior to Caspase-3 Activation.
    Marshall NC; Klein T; Thejoe M; von Krosigk N; Kizhakkedathu J; Finlay BB; Overall CM
    J Proteome Res; 2018 Dec; 17(12):4279-4296. PubMed ID: 30371095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.