BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 20305375)

  • 1. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms.
    Lenasi T; Barboric M
    RNA Biol; 2010; 7(2):145-50. PubMed ID: 20305375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cap-binding protein complex links pre-mRNA capping to transcription elongation and alternative splicing through positive transcription elongation factor b (P-TEFb).
    Lenasi T; Peterlin BM; Barboric M
    J Biol Chem; 2011 Jul; 286(26):22758-68. PubMed ID: 21536667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb.
    C Quaresma AJ; Bugai A; Barboric M
    Nucleic Acids Res; 2016 Sep; 44(16):7527-39. PubMed ID: 27369380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat.
    Brès V; Gomes N; Pickle L; Jones KA
    Genes Dev; 2005 May; 19(10):1211-26. PubMed ID: 15905409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RBM22 regulates RNA polymerase II 5' pausing, elongation rate, and termination by coordinating 7SK-P-TEFb complex and SPT5.
    Du X; Qin W; Yang C; Dai L; San M; Xia Y; Zhou S; Wang M; Wu S; Zhang S; Zhou H; Li F; He F; Tang J; Chen JY; Zhou Y; Xiao R
    Genome Biol; 2024 Apr; 25(1):102. PubMed ID: 38641822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient RNA polymerase II pause release requires U2 snRNP function.
    Caizzi L; Monteiro-Martins S; Schwalb B; Lysakovskaia K; Schmitzova J; Sawicka A; Chen Y; Lidschreiber M; Cramer P
    Mol Cell; 2021 May; 81(9):1920-1934.e9. PubMed ID: 33689748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 7SK/P-TEFb snRNP controls ultraviolet radiation-induced transcriptional reprogramming.
    Studniarek C; Tellier M; Martin PGP; Murphy S; Kiss T; Egloff S
    Cell Rep; 2021 Apr; 35(2):108965. PubMed ID: 33852864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 7SK snRNP/P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development.
    Barboric M; Lenasi T; Chen H; Johansen EB; Guo S; Peterlin BM
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7798-803. PubMed ID: 19416841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.
    Jimeno-González S; Payán-Bravo L; Muñoz-Cabello AM; Guijo M; Gutierrez G; Prado F; Reyes JC
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14840-5. PubMed ID: 26578803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulatory effect of splicing factors on transcriptional elongation.
    Fong YW; Zhou Q
    Nature; 2001 Dec 20-27; 414(6866):929-33. PubMed ID: 11780068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 7SKiing on chromatin: Move globally, act locally.
    D'Orso I
    RNA Biol; 2016 Jun; 13(6):545-53. PubMed ID: 27128603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KAP1 Recruitment of the 7SK snRNP Complex to Promoters Enables Transcription Elongation by RNA Polymerase II.
    McNamara RP; Reeder JE; McMillan EA; Bacon CW; McCann JL; D'Orso I
    Mol Cell; 2016 Jan; 61(1):39-53. PubMed ID: 26725010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Camptothecin releases P-TEFb from the inactive 7SK snRNP complex.
    Amente S; Gargano B; Napolitano G; Lania L; Majello B
    Cell Cycle; 2009 Apr; 8(8):1249-55. PubMed ID: 19305131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription.
    Jang MK; Mochizuki K; Zhou M; Jeong HS; Brady JN; Ozato K
    Mol Cell; 2005 Aug; 19(4):523-34. PubMed ID: 16109376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P-TEFb: Finding its ways to release promoter-proximally paused RNA polymerase II.
    Li Y; Liu M; Chen LF; Chen R
    Transcription; 2018; 9(2):88-94. PubMed ID: 28102758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The splicing factor SC35 has an active role in transcriptional elongation.
    Lin S; Coutinho-Mansfield G; Wang D; Pandit S; Fu XD
    Nat Struct Mol Biol; 2008 Aug; 15(8):819-26. PubMed ID: 18641664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing.
    Matveeva EA; Al-Tinawi QMH; Rouchka EC; Fondufe-Mittendorf YN
    Epigenetics Chromatin; 2019 Feb; 12(1):15. PubMed ID: 30777121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET Image Correlation Spectroscopy Reveals RNAPII-Independent P-TEFb Recruitment on Chromatin.
    Bidaux G; Le Nézet C; Pisfil MG; Henry M; Furlan A; Bensaude O; Vandenbunder B; Héliot L
    Biophys J; 2018 Feb; 114(3):522-533. PubMed ID: 29414698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor Sp3 represses expression of p21CIP¹ via inhibition of productive elongation by RNA polymerase II.
    Valin A; Ouyang J; Gill G
    Mol Cell Biol; 2013 Apr; 33(8):1582-93. PubMed ID: 23401853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.