These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20305795)

  • 41. Dynamic Ablative Networks: Shapeable Heat-Shielding Materials.
    Stewart KA; DeLellis DP; Lessard JJ; Rynk JF; Sumerlin BS
    ACS Appl Mater Interfaces; 2023 May; 15(21):25212-25223. PubMed ID: 36888996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability.
    Wang S; Wang N; Kai D; Li B; Wu J; Yeo JCC; Xu X; Zhu J; Loh XJ; Hadjichristidis N; Li Z
    Nat Commun; 2023 Mar; 14(1):1182. PubMed ID: 36864024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks.
    Liguori A; Hakkarainen M
    Macromol Rapid Commun; 2022 Jul; 43(13):e2100816. PubMed ID: 35080074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability.
    Nellepalli P; Patel T; Oh JK
    Macromol Rapid Commun; 2021 Oct; 42(20):e2100391. PubMed ID: 34418209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adaptable covalently cross-linked fibers.
    Tan H; Zhang L; Ma X; Sun L; Yu D; You Z
    Nat Commun; 2023 Apr; 14(1):2218. PubMed ID: 37072415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Renewable and recyclable covalent adaptable networks based on bio-derived lipoic acid.
    Alraddadi MA; Chiaradia V; Stubbs CJ; Worch JC; Dove AP
    Polym Chem; 2021 Oct; 12(40):5796-5802. PubMed ID: 34777585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solvent-Triggered Chemical Recycling of Ion-Conductive and Self-Healable Polyurethane Covalent Adaptive Networks.
    Lyu J; Song G; Jung H; Park YI; Lee SH; Jeong JE; Kim JC
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1511-1520. PubMed ID: 38129176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Covalent Adaptable Networks Using β-Amino Esters as Thermally Reversible Building Blocks.
    Taplan C; Guerre M; Du Prez FE
    J Am Chem Soc; 2021 Jun; 143(24):9140-9150. PubMed ID: 34121401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revisiting Acetoacetyl Chemistry to Build Malleable Cross-Linked Polymer Networks via Transamidation.
    Liu Z; Yu C; Zhang C; Shi Z; Yin J
    ACS Macro Lett; 2019 Mar; 8(3):233-238. PubMed ID: 35650822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Covalent Adaptable Networks with Tunable Exchange Rates Based on Reversible Thiol-yne Cross-Linking.
    Van Herck N; Maes D; Unal K; Guerre M; Winne JM; Du Prez FE
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3609-3617. PubMed ID: 31846194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultra-Fast Selenol-Yne Click (SYC) Reaction Enables Poly(selenoacetal) Covalent Adaptable Network Formation.
    Zhang M; Chen S; Xu G; Lu W; Li J; Zhang J; Zhang Z; Zhu J; Pan X
    Angew Chem Int Ed Engl; 2024 Jun; ():e202410245. PubMed ID: 38887146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CNT-Reinforced Self-Healable Epoxy Dynamic Networks Based on Disulfide Bond Exchange.
    Caglayan C; Kim G; Yun GJ
    ACS Omega; 2022 Dec; 7(48):43480-43491. PubMed ID: 36506194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability.
    Hu Z; Hu F; Deng L; Yang Y; Xie Q; Gao Z; Pan C; Jin Y; Tang J; Yu G; Zhang W
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202306039. PubMed ID: 37314932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic Bottlebrush Polymer Networks: Self-Healing in Super-Soft Materials.
    Self JL; Sample CS; Levi AE; Li K; Xie R; de Alaniz JR; Bates CM
    J Am Chem Soc; 2020 Apr; 142(16):7567-7573. PubMed ID: 32227998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Topological alternation from structurally adaptable to mechanically stable crosslinked polymer.
    Hu WH; Chen TT; Tamura R; Terayama K; Wang S; Watanabe I; Naito M
    Sci Technol Adv Mater; 2022; 23(1):66-75. PubMed ID: 35125966
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Closed-loop recyclable and biodegradable thioester-based covalent adaptable networks.
    Maity PR; Upadhyay C; Sinha ASK; Ojha U
    Chem Commun (Camb); 2023 Apr; 59(28):4225-4228. PubMed ID: 36940094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystallizable Aliphatic Chains Enhanced Covalent Adaptable Networks: Fast Reprocessing and Improved Performance.
    Liu Y; Yu Z; Xu X; Wang B; Feng H; Li P; Zhu J; Ma S
    Macromol Rapid Commun; 2022 Oct; 43(20):e2200379. PubMed ID: 35730398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Covalent adaptable networks using boronate linkages by incorporating TetraAzaADamantanes.
    van Hurne S; Kisters M; Smulders MMJ
    Front Chem; 2023; 11():1148629. PubMed ID: 36909710
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Covalent Adaptable Liquid Crystal Networks Enabled by Reversible Ring-Opening Cascades of Cyclic Disulfides.
    Huang S; Shen Y; Bisoyi HK; Tao Y; Liu Z; Wang M; Yang H; Li Q
    J Am Chem Soc; 2021 Aug; 143(32):12543-12551. PubMed ID: 34275290
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications.
    Yan D; Wang Z; Zhang Z
    Acc Chem Res; 2022 Apr; 55(7):1047-1058. PubMed ID: 35294183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.