These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20306147)

  • 1. Product-form stationary distributions for deficiency zero chemical reaction networks.
    Anderson DF; Craciun G; Kurtz TG
    Bull Math Biol; 2010 Nov; 72(8):1947-70. PubMed ID: 20306147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Product-Form Stationary Distributions for Deficiency Zero Networks with Non-mass Action Kinetics.
    Anderson DF; Cotter SL
    Bull Math Biol; 2016 Dec; 78(12):2390-2407. PubMed ID: 27796722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Results on stochastic reaction networks with non-mass action kinetics.
    Anderson DF; Nguyen TD
    Math Biosci Eng; 2019 Mar; 16(4):2118-2140. PubMed ID: 31137202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-independent differences between the mean of discrete stochastic systems and the corresponding continuous deterministic systems.
    Gadgil CJ
    Bull Math Biol; 2009 Oct; 71(7):1599-611. PubMed ID: 19322613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency.
    Johnston MD; Siegel D; Szederkényi G
    Math Biosci; 2013 Jan; 241(1):88-98. PubMed ID: 23079395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent product-form Poisson distributions for reaction networks with higher order complexes.
    Anderson DF; Schnoerr D; Yuan C
    J Math Biol; 2020 May; 80(6):1919-1951. PubMed ID: 32211950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-explosivity of Stochastically Modeled Reaction Networks that are Complex Balanced.
    Anderson DF; Cappelletti D; Koyama M; Kurtz TG
    Bull Math Biol; 2018 Oct; 80(10):2561-2579. PubMed ID: 30117084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic chromatography: A stochastic approach.
    Pasti L; Cavazzini A; Nassi M; Dondi F
    J Chromatogr A; 2010 Feb; 1217(7):1000-9. PubMed ID: 19896134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for simulating the dynamics of complex biological processes.
    Schilstra MJ; Martin SR; Keating SM
    Methods Cell Biol; 2008; 84():807-42. PubMed ID: 17964950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the existence of the positive steady states of weakly reversible deficiency-one mass action systems.
    Boros B
    Math Biosci; 2013 Oct; 245(2):157-70. PubMed ID: 23816926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks.
    Anderson DF; Craciun G; Gopalkrishnan M; Wiuf C
    Bull Math Biol; 2015 Sep; 77(9):1744-67. PubMed ID: 26376889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations.
    Gómez-Uribe CA; Verghese GC
    J Chem Phys; 2007 Jan; 126(2):024109. PubMed ID: 17228945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bistability in the chemical master equation for dual phosphorylation cycles.
    Bazzani A; Castellani GC; Giampieri E; Remondini D; Cooper LN
    J Chem Phys; 2012 Jun; 136(23):235102. PubMed ID: 22779621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox.
    Vellela M; Qian H
    Bull Math Biol; 2007 Jul; 69(5):1727-46. PubMed ID: 17318672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A moment closure method for stochastic reaction networks.
    Lee CH; Kim KH; Kim P
    J Chem Phys; 2009 Apr; 130(13):134107. PubMed ID: 19355717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the projection operator formalism to non-hamiltonian dynamics.
    Xing J; Kim KS
    J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition graph decomposition for complex balanced reaction networks with non-mass-action kinetics.
    Cappelletti D; Joshi B
    Math Biosci Eng; 2022 May; 19(8):7649-7668. PubMed ID: 35801439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical reaction network approaches to Biochemical Systems Theory.
    Arceo CP; Jose EC; Marin-Sanguino A; Mendoza ER
    Math Biosci; 2015 Nov; 269():135-52. PubMed ID: 26363083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes are open systems.
    Zahradník FJ
    IUBMB Life; 2000 Apr; 49(4):255-7. PubMed ID: 10995025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.