BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20306320)

  • 1. A feeding strategy for tetramethylpyrazine production by Bacillus subtilis based on the stimulating effect of ammonium phosphate.
    Zhu BF; Xu Y
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):953-9. PubMed ID: 20306320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precursor supply strategy for tetramethylpyrazine production by bacillus subtilis on solid-state fermentation of wheat bran.
    Hao F; Wu Q; Xu Y
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1346-52. PubMed ID: 23306895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy.
    Zhu BF; Xu Y
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):815-21. PubMed ID: 20437078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W; Wang R; Xiao D
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach.
    Zhu BF; Xu Y; Fan WL
    J Ind Microbiol Biotechnol; 2010 Feb; 37(2):179-86. PubMed ID: 19904566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Molasses and Soybean Meal Content to Enhance Tetramethylpyrazine Yield by
    Li Y; Gan S; Luo L; Yang W; Mo L; Shang C
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. rocF affects the production of tetramethylpyrazine in fermented soybeans with Bacillus subtilis BJ3-2.
    Liu Z; Wu Y; Zhang L; Tong S; Jin J; Gong X; Zhong J
    BMC Biotechnol; 2022 Jul; 22(1):18. PubMed ID: 35787694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetramethylpyrazine production from glucose by a newly isolated Bacillus mutant.
    Xiao ZJ; Xie NZ; Liu PH; Hua DL; Xu P
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):512-8. PubMed ID: 16802153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and identification of high yield tetramethylpyrazine strains in Nongxiangxing liquor Daqu and study on the mechanism of tetramethylpyrazine production.
    Liu Y; Li M; Hong X; Li H; Huang R; Han S; Hou J; Pan C
    J Sci Food Agric; 2023 Nov; 103(14):6849-6860. PubMed ID: 37293782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient production of Clostridium cellulolyticum H10 D-psicose 3-epimerase in Bacillus subtilis and use of these cells to produce D-psicose.
    Su L; Sun F; Liu Z; Zhang K; Wu J
    Microb Cell Fact; 2018 Nov; 17(1):188. PubMed ID: 30486886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Tetramethylpyrazine from Cane Molasses by
    Li Y; Luo L; Ding X; Zhang X; Gan S; Shang C
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.
    Cho YH; Song JY; Kim KM; Kim MK; Lee IY; Kim SB; Kim HS; Han NS; Lee BH; Kim BS
    N Biotechnol; 2010 Sep; 27(4):341-6. PubMed ID: 20541632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Alkylpyrazine Synthesis Mechanism Involving l-Threonine-3-Dehydrogenase Describes the Production of 2,5-Dimethylpyrazine and 2,3,5-Trimethylpyrazine by Bacillus subtilis.
    Zhang L; Cao Y; Tong J; Xu Y
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31585995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology.
    Chen PT; Chiang CJ; Chao YP
    Biotechnol Prog; 2007; 23(6):1327-32. PubMed ID: 17914859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of acetoin and its derivative tetramethylpyrazine from okara hydrolysate with Bacillus subtilis.
    Li T; Liu P; Guo G; Liu Z; Zhong L; Guo L; Chen C; Hao N; Ouyang P
    AMB Express; 2023 Feb; 13(1):25. PubMed ID: 36853576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of adenosine production by Bacillus subtilis CGMCC 4484 through metabolic flux analysis and simplified feeding strategies.
    Chen X; Zhang C; Cheng J; Shi X; Li L; Zhang Z; Bai J; Chen Y; Li S; Ying H
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1851-9. PubMed ID: 23616067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biosurfactant production by Bacillus subtilis SPB1 using developed fed-batch fermentation: effects of glucose levels and feeding systems.
    Bouassida M; Mnif I; Ghribi D
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):555-563. PubMed ID: 36645491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeding strategy design for recombinant human growth hormone production by Bacillus subtilis.
    Şahin B; Öztürk S; Çalık P; Özdamar TH
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1855-65. PubMed ID: 26104536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources.
    Jürgen B; Tobisch S; Wümpelmann M; Gördes D; Koch A; Thurow K; Albrecht D; Hecker M; Schweder T
    Biotechnol Bioeng; 2005 Nov; 92(3):277-98. PubMed ID: 16178035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.
    Amin GA
    Water Sci Technol; 2014; 70(2):234-40. PubMed ID: 25051469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.