These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 20306435)
1. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Azami M; Samadikuchaksaraei A; Poursamar SA Int J Artif Organs; 2010 Feb; 33(2):86-95. PubMed ID: 20306435 [TBL] [Abstract][Full Text] [Related]
2. A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation. Azami M; Tavakol S; Samadikuchaksaraei A; Hashjin MS; Baheiraei N; Kamali M; Nourani MR J Biomater Sci Polym Ed; 2012; 23(18):2353-68. PubMed ID: 22244095 [TBL] [Abstract][Full Text] [Related]
3. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
4. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
5. [Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study]. Li S; Hu X Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2014 Sep; 39(9):949-58. PubMed ID: 25269494 [TBL] [Abstract][Full Text] [Related]
6. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Jamalpoor Z; Mirzadeh H; Joghataei MT; Zeini D; Bagheri-Khoulenjani S; Nourani MR J Biomed Mater Res A; 2015 May; 103(5):1882-92. PubMed ID: 25195588 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855 [TBL] [Abstract][Full Text] [Related]
10. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
11. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility. Kemençe N; Bölgen N J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022 [TBL] [Abstract][Full Text] [Related]
12. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. Azami M; Moosavifar MJ; Baheiraei N; Moztarzadeh F; Ai J J Biomed Mater Res A; 2012 May; 100(5):1347-55. PubMed ID: 22374752 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Kavya KC; Jayakumar R; Nair S; Chennazhi KP Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473 [TBL] [Abstract][Full Text] [Related]
14. Preparation of laminated poly(ε-caprolactone)-gelatin-hydroxyapatite nanocomposite scaffold bioengineered via compound techniques for bone substitution. Hamlekhan A; Moztarzadeh F; Mozafari M; Azami M; Nezafati N Biomatter; 2011; 1(1):91-101. PubMed ID: 23507731 [TBL] [Abstract][Full Text] [Related]
15. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA; Lekakou C; Labeed FH J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083 [TBL] [Abstract][Full Text] [Related]
17. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study. Çakmak S; Çakmak AS; Gümüşderelioğlu M Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136 [TBL] [Abstract][Full Text] [Related]
18. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
19. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Fan T; Chen J; Pan P; Zhang Y; Hu Y; Liu X; Shi X; Zhang Q Colloids Surf B Biointerfaces; 2016 Nov; 147():217-223. PubMed ID: 27518453 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]