BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20306490)

  • 1. Backbone additivity in the transfer model of protein solvation.
    Hu CY; Kokubo H; Lynch GC; Bolen DW; Pettitt BM
    Protein Sci; 2010 May; 19(5):1011-22. PubMed ID: 20306490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimethylamine N-oxide influence on the backbone of proteins: an oligoglycine model.
    Hu CY; Lynch GC; Kokubo H; Pettitt BM
    Proteins; 2010 Feb; 78(3):695-704. PubMed ID: 19790265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additive transfer free energies of the peptide backbone unit that are independent of the model compound and the choice of concentration scale.
    Auton M; Bolen DW
    Biochemistry; 2004 Feb; 43(5):1329-42. PubMed ID: 14756570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide conformational preferences in osmolyte solutions: transfer free energies of decaalanine.
    Kokubo H; Hu CY; Pettitt BM
    J Am Chem Soc; 2011 Feb; 133(6):1849-58. PubMed ID: 21250690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea.
    Zou Q; Bennion BJ; Daggett V; Murphy KP
    J Am Chem Soc; 2002 Feb; 124(7):1192-202. PubMed ID: 11841287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cosolvents on the hydration of carbon nanotubes.
    Yang L; Gao YQ
    J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Counteraction of urea by trimethylamine N-oxide is due to direct interaction.
    Meersman F; Bowron D; Soper AK; Koch MH
    Biophys J; 2009 Nov; 97(9):2559-66. PubMed ID: 19883599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and energetics of the hydrogen-bonded backbone in protein folding.
    Bolen DW; Rose GD
    Annu Rev Biochem; 2008; 77():339-62. PubMed ID: 18518824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction-component analysis of the hydration and urea effects on cytochrome c.
    Yamamori Y; Ishizuka R; Karino Y; Sakuraba S; Matubayasi N
    J Chem Phys; 2016 Feb; 144(8):085102. PubMed ID: 26931726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.
    Mondal J; Halverson D; Li IT; Stirnemann G; Walker GC; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9270-5. PubMed ID: 26170324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model Dependency of TMAO's Counteracting Effect Against Action of Urea: Kast Model versus Osmotic Model of TMAO.
    Borgohain G; Paul S
    J Phys Chem B; 2016 Mar; 120(9):2352-61. PubMed ID: 26876571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction-component analysis of the urea effect on amino acid analogs.
    Karino Y; Matubayasi N
    Phys Chem Chem Phys; 2013 Mar; 15(12):4377-91. PubMed ID: 23416730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.
    Sarma R; Paul S
    J Phys Chem B; 2013 May; 117(18):5691-704. PubMed ID: 23586614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen bonding progressively strengthens upon transfer of the protein urea-denatured state to water and protecting osmolytes.
    Holthauzen LM; Rösgen J; Bolen DW
    Biochemistry; 2010 Feb; 49(6):1310-8. PubMed ID: 20073511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.
    Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A
    J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure, Peptides, and a Piezolyte: Structural Analysis of the Effects of Pressure and Trimethylamine-
    Folberth A; Polák J; Heyda J; van der Vegt NFA
    J Phys Chem B; 2020 Jul; 124(30):6508-6519. PubMed ID: 32615760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.