These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 20306533)
1. Sulfate reduction at pH 4.0 for treatment of process and wastewaters. Bijmans MF; de Vries E; Yang CH; N Buisman CJ; Lens PN; Dopson M Biotechnol Prog; 2010; 26(4):1029-37. PubMed ID: 20306533 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Bijmans MF; Peeters TW; Lens PN; Buisman CJ Water Res; 2008 May; 42(10-11):2439-48. PubMed ID: 18377946 [TBL] [Abstract][Full Text] [Related]
4. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters. Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212 [TBL] [Abstract][Full Text] [Related]
5. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor. Bijmans MF; van Helvoort PJ; Dar SA; Dopson M; Lens PN; Buisman CJ Water Res; 2009 Feb; 43(3):853-61. PubMed ID: 19059621 [TBL] [Abstract][Full Text] [Related]
7. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Kaksonen AH; Franzmann PD; Puhakka JA Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513 [TBL] [Abstract][Full Text] [Related]
8. Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses. Bijmans MF; Dopson M; Peeters TW; Lens PN; Buisman CJ J Microbiol Biotechnol; 2009 Jul; 19(7):698-708. PubMed ID: 19652518 [TBL] [Abstract][Full Text] [Related]
9. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. Bijmans MF; Dopson M; Ennin F; Lens PN; Buisman CJ J Microbiol Biotechnol; 2008 Nov; 18(11):1809-18. PubMed ID: 19047826 [TBL] [Abstract][Full Text] [Related]
10. Performance of a down-flow fluidized bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors. Celis-GarcĂa LB; Razo-Flores E; Monroy O Biotechnol Bioeng; 2007 Jul; 97(4):771-9. PubMed ID: 17154309 [TBL] [Abstract][Full Text] [Related]
11. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. Kaksonen AH; Plumb JJ; Franzmann PD; Puhakka JA FEMS Microbiol Ecol; 2004 Mar; 47(3):279-89. PubMed ID: 19712316 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenotrophic sulfate reduction in a gas-lift bioreactor operated at 9 degrees C. Nevatalo LM; Bijmans MF; Lens PN; Kaksonen AH; Puhakka JA J Microbiol Biotechnol; 2010 Mar; 20(3):615-21. PubMed ID: 20372036 [TBL] [Abstract][Full Text] [Related]
13. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater. Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238 [TBL] [Abstract][Full Text] [Related]
14. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. Kuo WC; Shu TY J Hazard Mater; 2004 Sep; 113(1-3):147-55. PubMed ID: 15363525 [TBL] [Abstract][Full Text] [Related]
15. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater. Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306 [TBL] [Abstract][Full Text] [Related]
16. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 degrees C temperatures is limited by acetate oxidation. Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA Water Res; 2007 Jun; 41(12):2706-14. PubMed ID: 17418880 [TBL] [Abstract][Full Text] [Related]
17. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Jong T; Parry DL Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360 [TBL] [Abstract][Full Text] [Related]
18. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Zhao Y; Ren N; Wang A Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751 [TBL] [Abstract][Full Text] [Related]
19. New developments in reactor and process technology for sulfate reduction. Pol LW; Lens PN; Weijma J; Stams AJ Water Sci Technol; 2001; 44(8):67-76. PubMed ID: 11730138 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. van Houten BH; Roest K; Tzeneva VA; Dijkman H; Smidt H; Stams AJ Water Res; 2006 Feb; 40(3):553-60. PubMed ID: 16427112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]