BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 20307295)

  • 1. In silico fragmentation for computer assisted identification of metabolite mass spectra.
    Wolf S; Schmidt S; Müller-Hannemann M; Neumann S
    BMC Bioinformatics; 2010 Mar; 11():148. PubMed ID: 20307295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetFusion: integration of compound identification strategies.
    Gerlich M; Neumann S
    J Mass Spectrom; 2013 Mar; 48(3):291-8. PubMed ID: 23494783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetFrag relaunched: incorporating strategies beyond in silico fragmentation.
    Ruttkies C; Schymanski EL; Wolf S; Hollender J; Neumann S
    J Cheminform; 2016; 8():3. PubMed ID: 26834843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annotation of metabolites from gas chromatography/atmospheric pressure chemical ionization tandem mass spectrometry data using an in silico generated compound database and MetFrag.
    Ruttkies C; Strehmel N; Scheel D; Neumann S
    Rapid Commun Mass Spectrom; 2015 Aug; 29(16):1521-9. PubMed ID: 26212167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics.
    Samaraweera MA; Hall LM; Hill DW; Grant DF
    Anal Chem; 2018 Nov; 90(21):12752-12760. PubMed ID: 30350614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Database supported candidate search for metabolite identification.
    Hildebrandt C; Wolf S; Neumann S
    J Integr Bioinform; 2011 Jul; 8(2):157. PubMed ID: 21734330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition.
    Bruderer T; Varesio E; Hidasi AO; Duchoslav E; Burton L; Bonner R; Hopfgartner G
    Anal Bioanal Chem; 2018 Mar; 410(7):1873-1884. PubMed ID: 29411086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetFID: artificial neural network-based compound fingerprint prediction for metabolite annotation.
    Fan Z; Alley A; Ghaffari K; Ressom HW
    Metabolomics; 2020 Sep; 16(10):104. PubMed ID: 32997169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification.
    Narduzzi L; Stanstrup J; Mattivi F; Franceschi P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov; 35(11):2145-2157. PubMed ID: 30352003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra.
    Shrivastava AD; Swainston N; Samanta S; Roberts I; Wright Muelas M; Kell DB
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. compMS2Miner: An Automatable Metabolite Identification, Visualization, and Data-Sharing R Package for High-Resolution LC-MS Data Sets.
    Edmands WM; Petrick L; Barupal DK; Scalbert A; Wilson MJ; Wickliffe JK; Rappaport SM
    Anal Chem; 2017 Apr; 89(7):3919-3928. PubMed ID: 28225587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.
    Wang Y; Kora G; Bowen BP; Pan C
    Anal Chem; 2014 Oct; 86(19):9496-503. PubMed ID: 25157598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction.
    Dhanasekaran AR; Pearson JL; Ganesan B; Weimer BC
    BMC Bioinformatics; 2015 Feb; 16(1):62. PubMed ID: 25887958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated pipeline for de novo metabolite identification using mass-spectrometry-based metabolomics.
    Peironcely JE; Rojas-Chertó M; Tas A; Vreeken R; Reijmers T; Coulier L; Hankemeier T
    Anal Chem; 2013 Apr; 85(7):3576-83. PubMed ID: 23368721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics.
    Jeffryes JG; Colastani RL; Elbadawi-Sidhu M; Kind T; Niehaus TD; Broadbelt LJ; Hanson AD; Fiehn O; Tyo KE; Henry CS
    J Cheminform; 2015; 7():44. PubMed ID: 26322134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolite identification using automated comparison of high-resolution multistage mass spectral trees.
    Rojas-Cherto M; Peironcely JE; Kasper PT; van der Hooft JJ; de Vos RC; Vreeken R; Hankemeier T; Reijmers T
    Anal Chem; 2012 Jul; 84(13):5524-34. PubMed ID: 22612383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.
    Vaniya A; Fiehn O
    Trends Analyt Chem; 2015 Jun; 69():52-61. PubMed ID: 26213431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra.
    Hill DW; Kertesz TM; Fontaine D; Friedman R; Grant DF
    Anal Chem; 2008 Jul; 80(14):5574-82. PubMed ID: 18547062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Search: A Method for Identifying Metabolites Absent from Tandem Mass Spectrometry Libraries.
    Cooper BT; Yan X; Simón-Manso Y; Tchekhovskoi DV; Mirokhin YA; Stein SE
    Anal Chem; 2019 Nov; 91(21):13924-13932. PubMed ID: 31600070
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.