These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 20307306)
1. A proteomic study of cMyc improvement of CHO culture. Kuystermans D; Dunn MJ; Al-Rubeai M BMC Biotechnol; 2010 Mar; 10():25. PubMed ID: 20307306 [TBL] [Abstract][Full Text] [Related]
2. Differential protein expression following low temperature culture of suspension CHO-K1 cells. Kumar N; Gammell P; Meleady P; Henry M; Clynes M BMC Biotechnol; 2008 Apr; 8():42. PubMed ID: 18430238 [TBL] [Abstract][Full Text] [Related]
3. Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. Meleady P; Doolan P; Henry M; Barron N; Keenan J; O'Sullivan F; Clarke C; Gammell P; Melville MW; Leonard M; Clynes M BMC Biotechnol; 2011 Jul; 11():78. PubMed ID: 21781345 [TBL] [Abstract][Full Text] [Related]
4. Mapping the molecular basis for growth related phenotypes in industrial producer CHO cell lines using differential proteomic analysis. Bryan L; Henry M; Kelly RM; Frye CC; Osborne MD; Clynes M; Meleady P BMC Biotechnol; 2021 Jul; 21(1):43. PubMed ID: 34301236 [TBL] [Abstract][Full Text] [Related]
5. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Kaushik P; Curell RV; Henry M; Barron N; Meleady P Biotechnol Lett; 2020 Dec; 42(12):2523-2536. PubMed ID: 32648187 [TBL] [Abstract][Full Text] [Related]
6. Proteomic profiling of CHO cells with enhanced rhBMP-2 productivity following co-expression of PACEsol. Meleady P; Henry M; Gammell P; Doolan P; Sinacore M; Melville M; Francullo L; Leonard M; Charlebois T; Clynes M Proteomics; 2008 Jul; 8(13):2611-24. PubMed ID: 18546152 [TBL] [Abstract][Full Text] [Related]
7. Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Kim JY; Kim YG; Han YK; Choi HS; Kim YH; Lee GM Appl Microbiol Biotechnol; 2011 Mar; 89(6):1917-28. PubMed ID: 21286710 [TBL] [Abstract][Full Text] [Related]
8. cMyc increases cell number through uncoupling of cell division from cell size in CHO cells. Kuystermans D; Al-Rubeai M BMC Biotechnol; 2009 Sep; 9():76. PubMed ID: 19735559 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of host cell protein dynamics in the supernatant of Fc-fusion protein-producing CHO DG44 and DUKX-B11 cell lines in batch and fed-batch cultures. Park JH; Jin JH; Ji IJ; An HJ; Kim JW; Lee GM Biotechnol Bioeng; 2017 Oct; 114(10):2267-2278. PubMed ID: 28627725 [TBL] [Abstract][Full Text] [Related]
10. Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Ifandi V; Al-Rubeai M Biotechnol Prog; 2005; 21(3):671-7. PubMed ID: 15932241 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive assessment of host cell protein expression after extended culture and bioreactor production of CHO cell lines. Hamaker NK; Min L; Lee KH Biotechnol Bioeng; 2022 Aug; 119(8):2221-2238. PubMed ID: 35508759 [TBL] [Abstract][Full Text] [Related]
12. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. Torres M; Zúñiga R; Gutierrez M; Vergara M; Collazo N; Reyes J; Berrios J; Aguillon JC; Molina MC; Altamirano C PLoS One; 2018; 13(3):e0194510. PubMed ID: 29566086 [TBL] [Abstract][Full Text] [Related]
13. Improvements in single-use bioreactor film material composition leads to robust and reliable Chinese hamster ovary cell performance. Kelly PS; Dorival-García N; Paré S; Carillo S; Ta C; Alarcon Miguez A; Coleman O; Harper E; Shannon M; Henry M; Connolly L; Clynes M; Meleady P; Bones J; Barron N Biotechnol Prog; 2019 Jul; 35(4):e2824. PubMed ID: 31017345 [TBL] [Abstract][Full Text] [Related]
14. Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells. Park JH; Jin JH; Lim MS; An HJ; Kim JW; Lee GM Sci Rep; 2017 Mar; 7():44246. PubMed ID: 28281648 [TBL] [Abstract][Full Text] [Related]
15. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control. Albrecht S; Kaisermayer C; Reinhart D; Ambrose M; Kunert R; Lindeberg A; Bones J Anal Bioanal Chem; 2018 May; 410(13):3197-3207. PubMed ID: 29607450 [TBL] [Abstract][Full Text] [Related]
16. More similar than different: Host cell protein production using three null CHO cell lines. Yuk IH; Nishihara J; Walker D; Huang E; Gunawan F; Subramanian J; Pynn AF; Yu XC; Zhu-Shimoni J; Vanderlaan M; Krawitz DC Biotechnol Bioeng; 2015 Oct; 112(10):2068-83. PubMed ID: 25894672 [TBL] [Abstract][Full Text] [Related]
17. 2D-DIGE screening of high-productive CHO cells under glucose limitation--basic changes in the proteome equipment and hints for epigenetic effects. Wingens M; Gätgens J; Schmidt A; Albaum SP; Büntemeyer H; Noll T; Hoffrogge R J Biotechnol; 2015 May; 201():86-97. PubMed ID: 25612871 [TBL] [Abstract][Full Text] [Related]
18. Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases. Carlage T; Kshirsagar R; Zang L; Janakiraman V; Hincapie M; Lyubarskaya Y; Weiskopf A; Hancock WS Biotechnol Prog; 2012; 28(3):814-23. PubMed ID: 22556165 [TBL] [Abstract][Full Text] [Related]