These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 20308107)
1. Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication. Dahotre NB; Paital SR; Samant AN; Daniel C Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1863-89. PubMed ID: 20308107 [TBL] [Abstract][Full Text] [Related]
2. Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating. Paital SR; Cao Z; He W; Dahotre NB Biofabrication; 2010 Jun; 2(2):025001. PubMed ID: 20811129 [TBL] [Abstract][Full Text] [Related]
3. Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility. Paital SR; He W; Dahotre NB J Mater Sci Mater Med; 2010 Jul; 21(7):2187-200. PubMed ID: 20464459 [TBL] [Abstract][Full Text] [Related]
4. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V. Chikarakara E; Fitzpatrick P; Moore E; Levingstone T; Grehan L; Higginbotham C; Vázquez M; Bagga K; Naher S; Brabazon D Biomed Mater; 2014 Dec; 10(1):015007. PubMed ID: 25546881 [TBL] [Abstract][Full Text] [Related]
5. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid. Singh R; Kurella A; Dahotre NB J Biomater Appl; 2006 Jul; 21(1):49-73. PubMed ID: 16443617 [TBL] [Abstract][Full Text] [Related]
6. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408 [TBL] [Abstract][Full Text] [Related]
7. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
8. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering. Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720 [TBL] [Abstract][Full Text] [Related]
9. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating. Paital SR; Dahotre NB Acta Biomater; 2009 Sep; 5(7):2763-72. PubMed ID: 19362524 [TBL] [Abstract][Full Text] [Related]
10. Selective laser melted titanium alloys for hip implant applications: Surface modification with new method of polymer grafting. Ghosh S; Abanteriba S; Wong S; Houshyar S J Mech Behav Biomed Mater; 2018 Nov; 87():312-324. PubMed ID: 30103113 [TBL] [Abstract][Full Text] [Related]
11. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314 [TBL] [Abstract][Full Text] [Related]
12. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method. Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336 [TBL] [Abstract][Full Text] [Related]
14. Surface characterizations of variously treated titanium materials. Lim YJ; Oshida Y; Andres CJ; Barco MT Int J Oral Maxillofac Implants; 2001; 16(3):333-42. PubMed ID: 11432653 [TBL] [Abstract][Full Text] [Related]
15. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620 [TBL] [Abstract][Full Text] [Related]
16. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Park JW; Kim YJ; Park CH; Lee DH; Ko YG; Jang JH; Lee CS Acta Biomater; 2009 Oct; 5(8):3272-80. PubMed ID: 19426841 [TBL] [Abstract][Full Text] [Related]
17. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761 [TBL] [Abstract][Full Text] [Related]
18. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher. Wang CC; Hsu YC; Su FC; Lu SC; Lee TM J Biomed Mater Res A; 2009 Feb; 88(2):370-83. PubMed ID: 18306287 [TBL] [Abstract][Full Text] [Related]
19. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
20. Promotion of pro-osteogenic responses by a bioactive ceramic coating. Aniket ; Young A; Marriott I; El-Ghannam A J Biomed Mater Res A; 2012 Dec; 100(12):3314-25. PubMed ID: 22733626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]