These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1476 related articles for article (PubMed ID: 20308112)

  • 1. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering.
    Sajesh KM; Jayakumar R; Nair SV; Chennazhi KP
    Int J Biol Macromol; 2013 Nov; 62():465-71. PubMed ID: 24080452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly (L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility.
    Chu J; Zeng S; Gao L; Groth T; Li Z; Kong J; Zhao M; Li L
    Int J Artif Organs; 2016 Oct; 39(8):435-443. PubMed ID: 27646631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate composites for bone tissue engineering: a review.
    Venkatesan J; Bhatnagar I; Manivasagan P; Kang KH; Kim SK
    Int J Biol Macromol; 2015 Jan; 72():269-81. PubMed ID: 25020082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine macromolecules cross-linked hydrogel scaffolds as physiochemically and biologically favorable entities for tissue engineering applications.
    Sumayya AS; Muraleedhara Kurup G
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):807-825. PubMed ID: 28287033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.
    Florczyk SJ; Kim DJ; Wood DL; Zhang M
    J Biomed Mater Res A; 2011 Sep; 98(4):614-20. PubMed ID: 21721118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.
    Amir Afshar H; Ghaee A
    Carbohydr Polym; 2016 Oct; 151():1120-1131. PubMed ID: 27474663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.
    Luo Y; Lode A; Wu C; Chang J; Gelinsky M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies.
    Vardar E; Vert M; Coudane J; Hasirci V; Hasirci N
    J Biomater Sci Polym Ed; 2012; 23(18):2273-86. PubMed ID: 22182333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.
    Awad HA; Wickham MQ; Leddy HA; Gimble JM; Guilak F
    Biomaterials; 2004 Jul; 25(16):3211-22. PubMed ID: 14980416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.
    Kumbhar SG; Pawar SH
    Biomed Mater Eng; 2016; 27(6):561-575. PubMed ID: 28234241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering.
    Jin HH; Kim DH; Kim TW; Shin KK; Jung JS; Park HC; Yoon SY
    Int J Biol Macromol; 2012 Dec; 51(5):1079-85. PubMed ID: 22959955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of alginate and chitosan fibres.
    Qin Y
    Med Device Technol; 2004; 15(1):34-7. PubMed ID: 14994638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.
    Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering.
    Majima T; Funakosi T; Iwasaki N; Yamane ST; Harada K; Nonaka S; Minami A; Nishimura S
    J Orthop Sci; 2005 May; 10(3):302-7. PubMed ID: 15928894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds.
    Li Z; Leung M; Hopper R; Ellenbogen R; Zhang M
    Biomaterials; 2010 Jan; 31(3):404-12. PubMed ID: 19819007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds.
    Oryan A; Kamali A; Moshiri A; Baharvand H; Daemi H
    Int J Biol Macromol; 2018 Feb; 107(Pt A):678-688. PubMed ID: 28919526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 74.