BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20308113)

  • 1. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays.
    Murr LE; Gaytan SM; Medina F; Lopez H; Martinez E; Machado BI; Hernandez DH; Martinez L; Lopez MI; Wicker RB; Bracke J
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1999-2032. PubMed ID: 20308113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.
    Murr LE; Amato KN; Li SJ; Tian YX; Cheng XY; Gaytan SM; Martinez E; Shindo PW; Medina F; Wicker RB
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1396-411. PubMed ID: 21783150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications.
    Murr LE; Quinones SA; Gaytan SM; Lopez MI; Rodela A; Martinez EY; Hernandez DH; Martinez E; Medina F; Wicker RB
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):20-32. PubMed ID: 19627804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.
    Yan C; Hao L; Hussein A; Young P
    J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next generation orthopaedic implants by additive manufacturing using electron beam melting.
    Murr LE; Gaytan SM; Martinez E; Medina F; Wicker RB
    Int J Biomater; 2012; 2012():245727. PubMed ID: 22956957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications.
    Elias KL; Daehn GS; Brantley WA; McGlumphy EA
    J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting.
    Cheng XY; Li SJ; Murr LE; Zhang ZB; Hao YL; Yang R; Medina F; Wicker RB
    J Mech Behav Biomed Mater; 2012 Dec; 16():153-62. PubMed ID: 23182384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy.
    Cook SD; Thongpreda N; Anderson RC; Haddad RJ
    J Biomed Mater Res; 1988 Apr; 22(4):287-302. PubMed ID: 3372550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.
    Nune KC; Kumar A; Misra RDK; Li SJ; Hao YL; Yang R
    Colloids Surf B Biointerfaces; 2017 Feb; 150():78-88. PubMed ID: 27888725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
    Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ
    Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
    Khor KA; Gu YW; Pan D; Cheang P
    Biomaterials; 2004 Aug; 25(18):4009-17. PubMed ID: 15046891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V).
    Hrabe NW; Heinl P; Flinn B; Körner C; Bordia RK
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):313-20. PubMed ID: 21948776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.
    Vamsi Krishna B; Xue W; Bose S; Bandyopadhyay A
    Acta Biomater; 2008 May; 4(3):697-706. PubMed ID: 18054298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design.
    Chen PQ; Lin SJ; Wu SS; So H
    Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium.
    Marin E; Fusi S; Pressacco M; Paussa L; Fedrizzi L
    J Mech Behav Biomed Mater; 2010 Jul; 3(5):373-81. PubMed ID: 20416551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting.
    Heinl P; Müller L; Körner C; Singer RF; Müller FA
    Acta Biomater; 2008 Sep; 4(5):1536-44. PubMed ID: 18467197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.