These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20308775)

  • 21. Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications.
    Tong HW; Wang M
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3834-40. PubMed ID: 18047070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the cell affinity of a poly(D,L-lactide) film modified by grafting collagen via a plasma technique.
    Zhao JH; Wang J; Tu M; Luo BH; Zhou CR
    Biomed Mater; 2006 Dec; 1(4):247-52. PubMed ID: 18458413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates.
    Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS
    Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.
    Yang F; Murugan R; Wang S; Ramakrishna S
    Biomaterials; 2005 May; 26(15):2603-10. PubMed ID: 15585263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatibility of sorbitol-containing polyesters. Part I: Synthesis, surface analysis and cell response in vitro.
    Mei Y; Kumar A; Gao W; Gross R; Kennedy SB; Washburn NR; Amis EJ; Elliott JT
    Biomaterials; 2004 Aug; 25(18):4195-201. PubMed ID: 15046909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering.
    Privalova A; Markvicheva E; Sevrin Ch; Drozdova M; Kottgen C; Gilbert B; Ortiz M; Grandfils Ch
    J Biomed Mater Res A; 2015 Mar; 103(3):939-48. PubMed ID: 24832052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid fibroblast adhesion to 27nm high polymer demixed nano-topography.
    Dalby MJ; Giannaras D; Riehle MO; Gadegaard N; Affrossman S; Curtis AS
    Biomaterials; 2004 Jan; 25(1):77-83. PubMed ID: 14580911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds.
    Andrews KD; Hunt JA; Black RA
    Biomaterials; 2007 Feb; 28(6):1014-26. PubMed ID: 17125831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable polyurethane cytocompatibility to fibroblasts and staphylococci.
    Harris LG; Gorna K; Gogolewski S; Richards RG
    J Biomed Mater Res A; 2006 May; 77(2):304-12. PubMed ID: 16400656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts.
    Dal Prà I; Petrini P; Chiarini A; Bozzini S; Farè S; Armato U
    Tissue Eng; 2003 Dec; 9(6):1113-21. PubMed ID: 14670099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold.
    Ellis MJ; Chaudhuri JB
    Biotechnol Bioeng; 2007 Jan; 96(1):177-87. PubMed ID: 16894632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro biocompatibility of different polyester membranes.
    Vaquette C; Fawzi-Grancher S; Lavalle P; Frochot C; Viriot ML; Muller S; Wang X
    Biomed Mater Eng; 2006; 16(4 Suppl):S131-6. PubMed ID: 16823104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications.
    Mandal BB; Priya AS; Kundu SC
    Acta Biomater; 2009 Oct; 5(8):3007-20. PubMed ID: 19398392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems.
    Bil M; Kijeńska-Gawrońska E; Głodkowska-Mrówka E; Manda-Handzlik A; Mrówka P
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110675. PubMed ID: 32204102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential.
    Kwon IK; Kidoaki S; Matsuda T
    Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation.
    Stylianopoulos T; Bashur CA; Goldstein AS; Guelcher SA; Barocas VH
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):326-35. PubMed ID: 19627797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.