BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 20309017)

  • 21. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo.
    Brown DT; Izard T; Misteli T
    Nat Struct Mol Biol; 2006 Mar; 13(3):250-5. PubMed ID: 16462749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone H1 is a specific repressor of core histone acetylation in chromatin.
    Herrera JE; West KL; Schiltz RL; Nakatani Y; Bustin M
    Mol Cell Biol; 2000 Jan; 20(2):523-9. PubMed ID: 10611231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin structure-dependent conformations of the H1 CTD.
    Fang H; Wei S; Lee TH; Hayes JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9131-9141. PubMed ID: 27365050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histone H1 and chromatin interactions in human fibroblast nuclei after H1 depletion and reconstitution with H1 subfractions.
    Kostova NN; Srebreva L; Markov DV; Rundquist I
    Cytometry A; 2004 Apr; 58(2):132-9. PubMed ID: 15057966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determinants of histone H1 mobility and chromatin binding in living cells.
    Catez F; Ueda T; Bustin M
    Nat Struct Mol Biol; 2006 Apr; 13(4):305-10. PubMed ID: 16715048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing.
    Fan L; Roberts VA
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8384-9. PubMed ID: 16717183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of linker histone H1 on chromatin remodeling.
    Hill DA
    Biochem Cell Biol; 2001; 79(3):317-24. PubMed ID: 11467745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative linker histone permits fast paced nuclear divisions in early Drosophila embryo.
    Henn L; Szabó A; Imre L; Román Á; Ábrahám A; Vedelek B; Nánási P; Boros IM
    Nucleic Acids Res; 2020 Sep; 48(16):9007-9018. PubMed ID: 32710625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interplay between H2A.Z and H3K9 methylation in regulating HP1α binding to linker histone-containing chromatin.
    Ryan DP; Tremethick DJ
    Nucleic Acids Res; 2018 Oct; 46(18):9353-9366. PubMed ID: 30007360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation.
    Kepert JF; Mazurkiewicz J; Heuvelman GL; Tóth KF; Rippe K
    J Biol Chem; 2005 Oct; 280(40):34063-72. PubMed ID: 16105835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3.
    Kim JM; Kim K; Punj V; Liang G; Ulmer TS; Lu W; An W
    Sci Rep; 2015 Nov; 5():16714. PubMed ID: 26581166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of charge neutralization and cooperative binding of linker histone in the higher-order structure of chromatin.
    Watanabe F
    FEBS Lett; 1989 Jun; 249(2):147-50. PubMed ID: 2737276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin architectural proteins.
    McBryant SJ; Adams VH; Hansen JC
    Chromosome Res; 2006; 14(1):39-51. PubMed ID: 16506095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linker Histone in Diseases.
    Ye X; Feng C; Gao T; Mu G; Zhu W; Yang Y
    Int J Biol Sci; 2017; 13(8):1008-1018. PubMed ID: 28924382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome.
    Hayes JJ; Kaplan R; Ura K; Pruss D; Wolffe A
    J Biol Chem; 1996 Oct; 271(42):25817-22. PubMed ID: 8824211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatosome Structure and Dynamics from Molecular Simulations.
    Öztürk MA; De M; Cojocaru V; Wade RC
    Annu Rev Phys Chem; 2020 Apr; 71():101-119. PubMed ID: 32017651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Germline-specific H1 variants: the "sexy" linker histones.
    Pérez-Montero S; Carbonell A; Azorín F
    Chromosoma; 2016 Mar; 125(1):1-13. PubMed ID: 25921218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linker histones versus HMG1/2: a struggle for dominance?
    Zlatanova J; van Holde K
    Bioessays; 1998 Jul; 20(7):584-8. PubMed ID: 9723008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.