These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20309207)

  • 1. Passive remote smoke plume opacity sensing: a technique.
    Lilienfeld P; Woker G; Stern R; McVay L
    Appl Opt; 1981 Mar; 20(5):800-6. PubMed ID: 20309207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on determination of plume velocity by passive differential optical absorption spectroscopy].
    Li A; Xie PH; Liu WQ; Liu JG; Dou K; Lin YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2214-7. PubMed ID: 19123375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sky-scattered solar radiation based plume transmissivity measurement to quantify soot emissions from flares.
    Johnson MR; Devillers RW; Yang C; Thomson KA
    Environ Sci Technol; 2010 Nov; 44(21):8196-202. PubMed ID: 20939575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote measurement of smoke plume transmittance using lidar.
    Cook CS; Bethke GW; Conner WD
    Appl Opt; 1972 Aug; 11(8):1742-8. PubMed ID: 20119229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field evaluation of digital optical method to quantify the visual opacity of plumes.
    Du K; Rood MJ; Kim BJ; Kemme MR; Franek BJ; Mattison K; Cook J
    J Air Waste Manag Assoc; 2007 Jul; 57(7):836-44. PubMed ID: 17687999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of digital optical method to determine plume opacity during nighttime.
    Du K; Rood MJ; Kim BJ; Kemme MR; Franek B; Mattison K
    Environ Sci Technol; 2009 Feb; 43(3):783-9. PubMed ID: 19245017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies on the determination of the flux of gaseous pollutant from an area by passive differential optical absorption spectroscopy].
    Li A; Xie PH; Liu WQ; Liu JG; Dou K
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):28-32. PubMed ID: 19385199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent and incoherent scattering by a plume of particles advected by turbulent velocity flow.
    Palmer DR
    J Acoust Soc Am; 2009 Aug; 126(2):587-98. PubMed ID: 19640023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of ethanol in heated plumes by passive Fourier transform infrared remote sensing measurements.
    Sulub Y; Small GW
    Analyst; 2007 Apr; 132(4):330-7. PubMed ID: 17554412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV.
    Barta A; Horváth G
    J Theor Biol; 2004 Feb; 226(4):429-37. PubMed ID: 14759649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of plume opacity by digital photography.
    Du K; Rood MJ; Kim BJ; Kemme MR; Franek B; Mattison K
    Environ Sci Technol; 2007 Feb; 41(3):928-35. PubMed ID: 17328205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote sensing of gas concentrations in smokestack emissions.
    Granatstein VL; Rhinewine M; Fitch AH
    Appl Opt; 1973 Jul; 12(7):1511-5. PubMed ID: 20125555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote and cross-stack measurement of stack gas concentrations using a mobile FT-IR system.
    Herget WF
    Appl Opt; 1982 Feb; 21(4):635-41. PubMed ID: 20372510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized skylight navigation.
    Hamaoui M
    Appl Opt; 2017 Jan; 56(3):B37-B46. PubMed ID: 28157863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site.
    Rojas-Palma C; Aage HK; Astrup P; Bargholz K; Drews M; Jørgensen HE; Korsbech U; Lauritzen B; Mikkelsen T; Thykier-Nielsen S; Van Ammel R
    Radiat Prot Dosimetry; 2004; 108(2):161-8. PubMed ID: 14978295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive remote monitoring of chemical vapors by differential Fourier-transform infrared radiometry: results at a range of 1.5 km.
    Thériault JM; Puckrin E; Bouffard F; Déry B
    Appl Opt; 2004 Feb; 43(6):1425-34. PubMed ID: 15008550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locating pollutant emission sources with optical remote sensing measurements and an improved one-dimensional radial plume mapping technique.
    Wu CF; Lin SC; Yeh CK
    J Environ Monit; 2012 Apr; 14(4):1203-10. PubMed ID: 22382995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal.
    Polak ML; Hall JL; Herr KC
    Appl Opt; 1995 Aug; 34(24):5406-12. PubMed ID: 21060362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enhanced MODIS remote sensing model for detecting rainfall effects on sediment plume in the coastal waters of Apalachicola Bay.
    Chen S; Huang W; Chen W; Chen X
    Mar Environ Res; 2011 Dec; 72(5):265-72. PubMed ID: 22051796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of non-principal plane neutral points in the in-water upwelling polarized light field.
    Voss KJ; Gleason AC; Gordon HR; Kattawar GW; You Y
    Opt Express; 2011 Mar; 19(7):5942-52. PubMed ID: 21451619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.