BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 20309303)

  • 1. Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 1: Optical characteristics of uranyl geologic targets.
    Deneufville JP; Kasdan A; Chimenti RJ
    Appl Opt; 1981 Apr; 20(8):1279-96. PubMed ID: 20309303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 2: Experimental assessment of the remote sensing of uranyl geologic targets.
    Kasdan A; Chimenti RJ; Deneufville JP
    Appl Opt; 1981 Apr; 20(8):1297-307. PubMed ID: 20309304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric investigation of laser-induced fluorescence of solid-state uranyl compounds.
    Wang G; Su Y; Monts DL
    J Phys Chem A; 2008 Oct; 112(42):10502-8. PubMed ID: 18823105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS).
    Baumann N; Brendler V; Arnold T; Geipel G; Bernhard G
    J Colloid Interface Sci; 2005 Oct; 290(2):318-24. PubMed ID: 16129445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence properties of a uranyl(V)-carbonate species [U(V)O(2)(CO(3))(3)](5-) at low temperature.
    Grossmann K; Arnold T; Ikeda-Ohno A; Steudtner R; Geipel G; Bernhard G
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Mar; 72(2):449-53. PubMed ID: 19091628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRLFS evidence for precipitation of uranyl phosphate on the surface of alumina: environmental implications.
    Del Nero M; Galindo C; Barillon R; Madé B
    Environ Sci Technol; 2011 May; 45(9):3982-8. PubMed ID: 21469705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling.
    Chisholm-Brause CJ; Berg JM; Little KM; Matzner RA; Morris DE
    J Colloid Interface Sci; 2004 Sep; 277(2):366-82. PubMed ID: 15341848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boltwoodite [K(UO2)(SiO3OH)(H2O)1.5] and compreignacite K2[(UO2)3O2(OH)3]2.7H2O characterized by laser fluorescence spectroscopy.
    Arnold T; Baumann N
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1964-8. PubMed ID: 18789751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in technologies for the measurement of uranium in diverse matrices.
    Rathore DP
    Talanta; 2008 Oct; 77(1):9-20. PubMed ID: 18804592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EXAFS and DFT investigations of uranyl arsenate complexes in aqueous solution.
    Gezahegne WA; Hennig C; Tsushima S; Planer-Friedrich B; Scheinost AC; Merkel BJ
    Environ Sci Technol; 2012 Feb; 46(4):2228-33. PubMed ID: 22229913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium(VI) complexes with phospholipid model compounds--a laser spectroscopic study.
    Koban A; Bernhard G
    J Inorg Biochem; 2007 May; 101(5):750-7. PubMed ID: 17320184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective recognition and extraction of the uranyl ion.
    Sather AC; Berryman OB; Rebek J
    J Am Chem Soc; 2010 Oct; 132(39):13572-4. PubMed ID: 20839791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of uranium(VI) with lipopolysaccharide.
    Barkleit A; Moll H; Bernhard G
    Dalton Trans; 2008 Jun; (21):2879-86. PubMed ID: 18478152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Laser Filament-induced Fluorescence Spectroscopy of Uranyl Fluoride.
    Skrodzki PJ; Burger M; Finney LA; Poineau F; Balasekaran SM; Nees J; Czerwinski KR; Jovanovic I
    Sci Rep; 2018 Aug; 8(1):11629. PubMed ID: 30072758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote Raman and fluorescence studies of mineral samples.
    Bozlee BJ; Misra AK; Sharma SK; Ingram M
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2342-8. PubMed ID: 16029855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective uranyl ion detection by polymeric ion-selective electrodes based on salphenH2 derivatives.
    Kim DW; Park KW; Yang MH; Kim TH; Mahajan RK; Kim JS
    Talanta; 2007 Nov; 74(2):223-8. PubMed ID: 18371633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions.
    Geissler A; Merroun M; Geipel G; Reuther H; Selenska-Pobell S
    Geobiology; 2009 Jun; 7(3):282-94. PubMed ID: 19476503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters.
    Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel uranyl membrane sensor with potentiometric anionic response.
    Hassan SS; Attawiya AM
    Talanta; 2006 Nov; 70(4):883-9. PubMed ID: 18970854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of uranium with polyphosphate.
    Vazquez GJ; Dodge CJ; Francis AJ
    Chemosphere; 2007 Dec; 70(2):263-9. PubMed ID: 17673274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.