These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20309341)
1. Lidar evaluation of smoke and dust clouds. Uthe EE Appl Opt; 1981 May; 20(9):1503-10. PubMed ID: 20309341 [TBL] [Abstract][Full Text] [Related]
2. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Ansmann A; Wandinger U; Riebesell M; Weitkamp C; Michaelis W Appl Opt; 1992 Nov; 31(33):7113. PubMed ID: 20802574 [TBL] [Abstract][Full Text] [Related]
3. Retrieval of water cloud properties from carbon dioxide lidar soundings. Piatt CM; Takashima T Appl Opt; 1987 Apr; 26(7):1257-63. PubMed ID: 20454313 [TBL] [Abstract][Full Text] [Related]
4. Analysis of lidar backscatter profiles in optically thin clouds. Young SA Appl Opt; 1995 Oct; 34(30):7019-31. PubMed ID: 21060563 [TBL] [Abstract][Full Text] [Related]
5. Calibration of the 1064 nm lidar channel using water phase and cirrus clouds. Wu Y; Gan CM; Cordero L; Gross B; Moshary F; Ahmed S Appl Opt; 2011 Jul; 50(21):3987-99. PubMed ID: 21772382 [TBL] [Abstract][Full Text] [Related]
10. Estimation of the extinction coefficient of clouds from multiwavelength lidar backscatter measurements. Derr VE Appl Opt; 1980 Jul; 19(14):2310-4. PubMed ID: 20234415 [TBL] [Abstract][Full Text] [Related]
11. Laboratory simulations of lidar returns from clouds: experimental and numerical results. Zaccanti G; Bruscaglioni P; Gurioli M; Sansoni P Appl Opt; 1993 Mar; 32(9):1590-7. PubMed ID: 20820291 [TBL] [Abstract][Full Text] [Related]
12. Cirrus cloud transmittance and backscatter in the infrared measured with a CO(2) lidar. Hall FF; Cupp RE; Troxel SW Appl Opt; 1988 Jun; 27(12):2510-6. PubMed ID: 20531784 [TBL] [Abstract][Full Text] [Related]
13. Lidar observations during dusty infrared Test-1. Randhawa JS; Van der Laan JE Appl Opt; 1980 Jul; 19(14):2291-7. PubMed ID: 20234413 [TBL] [Abstract][Full Text] [Related]
14. Depolarization of polarized light caused by high altitude clouds. 1: Depolarization of lidar induced by cirrus. Sun YY; Li ZP; Bösenberg J Appl Opt; 1989 Sep; 28(17):3625-32. PubMed ID: 20555746 [TBL] [Abstract][Full Text] [Related]
15. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio. Noel V; Chepfer H; Ledanois G; Delaval A; Flamant PH Appl Opt; 2002 Jul; 41(21):4245-57. PubMed ID: 12148751 [TBL] [Abstract][Full Text] [Related]
17. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Sakai T; Nagai T; Nakazato M; Mano Y; Matsumura T Appl Opt; 2003 Dec; 42(36):7103-16. PubMed ID: 14717284 [TBL] [Abstract][Full Text] [Related]
18. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm. Pal SR; Carswell AI Appl Opt; 1978 Aug; 17(15):2321-8. PubMed ID: 20203781 [TBL] [Abstract][Full Text] [Related]
19. Transmittance ratio constrained retrieval technique for lidar cirrus measurements. Su J; McCormick MP; Liu Z; Lee RB; Leavor KR; Lei L Opt Lett; 2012 May; 37(9):1595-7. PubMed ID: 22555749 [TBL] [Abstract][Full Text] [Related]
20. Lidar for multiple backscattering and depolarization observations. Allen RJ; Platt CM Appl Opt; 1977 Dec; 16(12):3193-9. PubMed ID: 20174327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]