These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Properties of fiber optics for application in astronomical interferometry. Rohloff RR; Leinert C Appl Opt; 1991 Dec; 30(34):5031-6. PubMed ID: 20717317 [TBL] [Abstract][Full Text] [Related]
26. Phase extraction from electronic speckle pattern interferometry addition fringes. Moore AJ; Tyrer JR; Santoyo FM Appl Opt; 1994 Nov; 33(31):7312-20. PubMed ID: 20941287 [TBL] [Abstract][Full Text] [Related]
27. Laser interferometry for the determination of thickness distributions of low absorbing films and their spatial and thickness resolutions. Mishima T; Kao KC Appl Opt; 1982 Mar; 21(6):1101-5. PubMed ID: 20389811 [TBL] [Abstract][Full Text] [Related]
28. Remote laser generation of narrow-band surface waves through optical fibers. Di Scalea FL; Berndt TP; Spicer JB; Djordjevic BB IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1551-7. PubMed ID: 18244353 [TBL] [Abstract][Full Text] [Related]
29. The holo-diagram. V: a device for practical interpreting of hologram interference fringes. Abramson N Appl Opt; 1972 May; 11(5):1143-7. PubMed ID: 20119108 [TBL] [Abstract][Full Text] [Related]
30. Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming. Lingham-Soliar T J Morphol; 2005 May; 264(2):233-52. PubMed ID: 15795938 [TBL] [Abstract][Full Text] [Related]
31. A multi-mode fiber probe for holographic micromanipulation and microscopy. Bianchi S; Di Leonardo R Lab Chip; 2012 Feb; 12(3):635-9. PubMed ID: 22170301 [TBL] [Abstract][Full Text] [Related]
32. Performance of individual fibers in a submerged hollow fiber bundle. Yeo A; Fane AG Water Sci Technol; 2005; 51(6-7):165-72. PubMed ID: 16003975 [TBL] [Abstract][Full Text] [Related]
33. Diffractive interconnection between a high-power Nd:YAG laser and a fiber bundle. Wyrowski F; Zuidema R Appl Opt; 1994 Oct; 33(29):6732-40. PubMed ID: 20941217 [TBL] [Abstract][Full Text] [Related]
34. Separation of in-plane and out-of-plane motions in holographic interferometry. Katzir Y; Glaser I Appl Opt; 1982 Feb; 21(4):678-83. PubMed ID: 20372516 [TBL] [Abstract][Full Text] [Related]
35. Diameter measurement of single-mode fiber by using interferometric and imaging techniques. Joenathan C; Bunch RM Appl Opt; 1993 Oct; 32(30):5989-96. PubMed ID: 20856425 [TBL] [Abstract][Full Text] [Related]
36. Determination of sensitivity vectors in hologram interferometry from two known rotations of the object. Pryputniewicz RJ; Stetson KA Appl Opt; 1980 Jul; 19(13):2201-5. PubMed ID: 20221208 [TBL] [Abstract][Full Text] [Related]
37. The directional reflectance of the retinal nerve fiber layer of the toad. Knighton RW; Baverez C; Bhattacharya A Invest Ophthalmol Vis Sci; 1992 Aug; 33(9):2603-11. PubMed ID: 1639607 [TBL] [Abstract][Full Text] [Related]
38. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization. Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211 [TBL] [Abstract][Full Text] [Related]
39. Decoding the spectra of low-finesse extrinsic optical fiber Fabry-Perot interferometers. Ma C; Dong B; Gong J; Wang A Opt Express; 2011 Nov; 19(24):23727-42. PubMed ID: 22109399 [TBL] [Abstract][Full Text] [Related]
40. Fiber-optic transmission of stretched pulses from a Q-switched ruby laser. Pflüger S; Sellhorst M; Sturm V; Noll R Appl Opt; 1996 Sep; 35(25):5165-9. PubMed ID: 21102952 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]