These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20309371)

  • 1. Optical water quality model of Lake Ontario. 1: Determination of the optical cross sections of organic and inorganic particulates in Lake Ontario.
    Bukata RP; Jerome JH; Bruton JE; Jain SC; Zwick HH
    Appl Opt; 1981 May; 20(9):1696-703. PubMed ID: 20309371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of inherent optical properties of Lake Ontario coastal waters.
    Bukata RP; Jerome JH; Bruton JE; Jain SC
    Appl Opt; 1979 Dec; 18(23):3926-32. PubMed ID: 20216727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China.
    Wu G; Cui L; Duan H; Fei T; Liu Y
    Appl Opt; 2011 Dec; 50(34):6358-68. PubMed ID: 22192987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical water quality model of Lake Ontario. 2: Determination of chlorophyll a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors.
    Bukata RP; Bruton JE; Jerome JH; Jain SC; Zwick HH
    Appl Opt; 1981 May; 20(9):1704-14. PubMed ID: 20309372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean.
    Gordon HR
    Appl Opt; 1987 Oct; 26(19):4133-48. PubMed ID: 20490199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of hyperspectral inherent optical properties from in-water radiometry: error analysis and application to in situ data.
    Rehm E; Mobley CD
    Appl Opt; 2013 Feb; 52(4):795-817. PubMed ID: 23385922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal variations of the inherent and apparent optical properties in a shallow coastal lake.
    Bracchini L; Dattilo AM; Falcucci M; Loiselle SA; Hull V; Arena C; Rossi C
    J Photochem Photobiol B; 2005 Sep; 80(3):161-77. PubMed ID: 15967673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring inherent optical properties and water constituent profiles from apparent optical properties.
    Fan Y; Li W; Calzado VS; Trees C; Stamnes S; Fournier G; McKee D; Stamnes K
    Opt Express; 2015 Jul; 23(15):A987-1009. PubMed ID: 26367699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model.
    Pierson DC; Strömbeck N
    Sci Total Environ; 2001 Mar; 268(1-3):171-88. PubMed ID: 11315739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Bio-optical model of total suspended matter based on reflectance in the near infrared wave band for case-II waters].
    Xu JP; Zhang B; Song KS; Wang ZM; Duan HT; Chen M; Yang F; Li FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2273-7. PubMed ID: 19123387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of the clearest natural waters (200-800 nm).
    Smith RC; Baker KS
    Appl Opt; 1981 Jan; 20(2):177-84. PubMed ID: 20309088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering.
    Loisel H; Stramski D
    Appl Opt; 2000 Jun; 39(18):3001-11. PubMed ID: 18345226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman scattering and in-water ocean optical properties.
    Marshall BR; Smith RC
    Appl Opt; 1990 Jan; 29(1):71-84. PubMed ID: 20556070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and seasonal variations in attenuation of solar ultraviolet radiation in Lake Biwa, Japan.
    Hayakawa K; Sugiyama Y
    J Photochem Photobiol B; 2008 Feb; 90(2):121-33. PubMed ID: 18207416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of scattering phenomena on the solar zenith angle dependence of in-water irradiance levels.
    Jerome JH; Bruton JE; Bukata RP
    Appl Opt; 1982 Feb; 21(4):642-7. PubMed ID: 20372511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification.
    Sun D; Li Y; Wang Q; Le C; Lv H; Huang C; Gong S
    Photochem Photobiol Sci; 2012 Aug; 11(8):1299-312. PubMed ID: 22584274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters.
    Albert A; Mobley C
    Opt Express; 2003 Nov; 11(22):2873-90. PubMed ID: 19471407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile.
    Gordon HR
    Appl Opt; 1992 Apr; 31(12):2116-29. PubMed ID: 20720867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and seasonal changes in optical properties of autochthonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake.
    Bracchini L; Dattilo AM; Hull V; Loiselle SA; Nannicini L; Picchi MP; Ricci M; Santinelli C; Seritti A; Tognazzi A; Rossi C
    Photochem Photobiol Sci; 2010 Mar; 9(3):304-14. PubMed ID: 20221456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.