These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20309758)

  • 1. A semiparametric Bayesian approach for estimating the gene expression distribution.
    Zou F; Huang H; Ibrahim JG
    J Biopharm Stat; 2010 Mar; 20(2):267-80. PubMed ID: 20309758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian mixture model for partitioning gene expression data.
    Zhou C; Wakefield J
    Biometrics; 2006 Jun; 62(2):515-25. PubMed ID: 16918916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian robust inference for differential gene expression in microarrays with multiple samples.
    Gottardo R; Raftery AE; Yeung KY; Bumgarner RE
    Biometrics; 2006 Mar; 62(1):10-8. PubMed ID: 16542223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unit information Dirichlet process prior.
    Gu J; Yin G
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39248120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An empirical Bayes optimal discovery procedure based on semiparametric hierarchical mixture models.
    Noma H; Matsui S
    Comput Math Methods Med; 2013; 2013():568480. PubMed ID: 23690877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks.
    Husmeier D
    Bioinformatics; 2003 Nov; 19(17):2271-82. PubMed ID: 14630656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage.
    Sha N; Vannucci M; Tadesse MG; Brown PJ; Dragoni I; Davies N; Roberts TC; Contestabile A; Salmon M; Buckley C; Falciani F
    Biometrics; 2004 Sep; 60(3):812-9. PubMed ID: 15339306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian neural networks for bivariate binary data: an application to prostate cancer study.
    Chakraborty S; Ghosh M; Maiti T; Tewari A
    Stat Med; 2005 Dec; 24(23):3645-62. PubMed ID: 16138362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-parametric differential expression analysis via partial mixture estimation.
    Rossell D; Guerra R; Scott C
    Stat Appl Genet Mol Biol; 2008; 7(1):Article15. PubMed ID: 18454730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes.
    Yue YR; Loh JM
    Biometrics; 2011 Sep; 67(3):937-46. PubMed ID: 21175553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sample size for identifying differentially expressed genes in microarray experiments.
    Wang SJ; Chen JJ
    J Comput Biol; 2004; 11(4):714-26. PubMed ID: 15579240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A temporal hidden Markov regression model for the analysis of gene regulatory networks.
    Gupta M; Qu P; Ibrahim JG
    Biostatistics; 2007 Oct; 8(4):805-20. PubMed ID: 17400597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mixture model approach to sample size estimation in two-sample comparative microarray experiments.
    Jørstad TS; Midelfart H; Bones AM
    BMC Bioinformatics; 2008 Feb; 9():117. PubMed ID: 18298817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.
    Noma H; Matsui S
    Stat Med; 2013 May; 32(11):1904-16. PubMed ID: 23281021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the demand for health care with panel data: a semiparametric Bayesian approach.
    Jochmann M; León-González R
    Health Econ; 2004 Oct; 13(10):1003-14. PubMed ID: 15455465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Markov chain representation of the multiple testing problem.
    Cabras S
    Stat Methods Med Res; 2018 Feb; 27(2):364-383. PubMed ID: 26984908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample size calculation through the incorporation of heteroscedasticity and dependence for a penalized t-statistic in microarray experiments.
    Hirakawa A; Hamada C; Yoshimura I
    J Biopharm Stat; 2012; 22(2):260-75. PubMed ID: 22251173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
    Zhao H; Chan KL; Cheng LM; Yan H
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S9. PubMed ID: 18315862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Laplace mixture model for identification of differential expression in microarray experiments.
    Bhowmick D; Davison AC; Goldstein DR; Ruffieux Y
    Biostatistics; 2006 Oct; 7(4):630-41. PubMed ID: 16565148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.