These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20309982)

  • 1. Synthetic design of heterometallic cluster compounds with site-selective and stepwise substitution of bridging carboxylates.
    Ikegami A; Abe M; Inatomi A; Hisaeda Y
    Chemistry; 2010 Apr; 16(15):4438-41. PubMed ID: 20309982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new route for substitution of the bridging acetate on the oxo-centered triruthenium acetate cluster.
    Yuge H; Asahi S; Miyamoto TK
    Dalton Trans; 2009 Apr; (13):2287-9. PubMed ID: 19290360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of ambidentate pyridyl-carboxylate ligands with octahedral ruthenium metal centers: self-selection for a single-linkage isomer and anticancer-potency studies.
    Jung H; Dubey A; Koo HJ; Vajpayee V; Cook TR; Kim H; Kang SC; Stang PJ; Chi KW
    Chemistry; 2013 May; 19(21):6709-17. PubMed ID: 23536332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-metal interactions in dinuclear ruthenium complexes containing bridging 4,5-di(2-pyridyl)imidazolates and related ligands.
    Slater JW; D'Alessandro DM; Keene FR; Steel PJ
    Dalton Trans; 2006 Apr; (16):1954-62. PubMed ID: 16609765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical activation of ruthenium(II)-pyridylamine complexes having a pyridine-N-oxide pendant toward oxygenation of organic substrates.
    Kojima T; Nakayama K; Sakaguchi M; Ogura T; Ohkubo K; Fukuzumi S
    J Am Chem Soc; 2011 Nov; 133(44):17901-11. PubMed ID: 21942283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2,2':6',2''-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(II) complexes.
    Schulze B; Friebe C; Hager MD; Winter A; Hoogenboom R; Görls H; Schubert US
    Dalton Trans; 2009 Feb; (5):787-94. PubMed ID: 19156271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural and functional roles of rhodium(II)-rhodium(II) dimers in multinuclear ruthenium(II) complexes.
    Cooke MW; Hanan GS; Loiseau F; Campagna S; Watanabe M; Tanaka Y
    Angew Chem Int Ed Engl; 2005 Aug; 44(31):4881-4. PubMed ID: 15995992
    [No Abstract]   [Full Text] [Related]  

  • 8. Modular synthesis of alkyne-substituted ruthenium polypyridyl complexes suitable for "click" coupling.
    Gerken JB; Rigsby ML; Ruther RE; Pérez-Rodríguez RJ; Guzei IA; Hamers RJ; Stahl SS
    Inorg Chem; 2013 Mar; 52(6):2796-8. PubMed ID: 23458735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective chelation of Cd(II) and Pb(II) versus Ca(II) and Zn(II) by using octadentate ligands containing pyridinecarboxylate and pyridyl pendants.
    Ferreirós-Martínez R; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T
    Inorg Chem; 2009 Dec; 48(23):10976-87. PubMed ID: 19877597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersed Ru nanoclusters transformed from a grafted trinuclear Ru complex on SiO2 for selective alcohol oxidation.
    Muratsugu S; Lim MH; Itoh T; Thumrongpatanaraks W; Kondo M; Masaoka S; Hor TS; Tada M
    Dalton Trans; 2013 Sep; 42(35):12611-9. PubMed ID: 23757390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diastereoselective synthesis of coordination compounds: a chiral tripodal ligand based on bipyridine units and its ruthenium(II) and iron(II) complexes.
    Hamann C; Von Zelewsky A; Neels A; Stoeckli-Evans H
    Dalton Trans; 2004 Feb; (3):402-6. PubMed ID: 15252546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Sn(IV) porphyrin/trinuclear ruthenium cluster dyads linked by pyridine carboxylates: photoinduced electron transfer in the Marcus inverted region.
    Kojima T; Hanabusa K; Ohkubo K; Shiro M; Fukuzumi S
    Chemistry; 2010 Mar; 16(12):3646-55. PubMed ID: 20209522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proline as chiral auxiliary for the economical asymmetric synthesis of ruthenium(II) polypyridyl complexes.
    Fu C; Wenzel M; Treutlein E; Harms K; Meggers E
    Inorg Chem; 2012 Sep; 51(18):10004-11. PubMed ID: 22946499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organobimetallic Ru(II)-Re(I) 4-ethynylpyridyl complexes: structures and non-linear optical properties.
    Ge Q; Corkery TC; Humphrey MG; Samoc M; Hor TS
    Dalton Trans; 2009 Aug; (31):6192-200. PubMed ID: 20449116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interweaving of triple-helical and extended metal-O-metal single-helical chains with the same helix axis in a 3D metal-organic framework.
    Zang S; Su Y; Li Y; Ni Z; Zhu H; Meng Q
    Inorg Chem; 2006 May; 45(10):3855-7. PubMed ID: 16676942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide.
    Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA
    Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt coordination induced functionalized molecular clefts: isolation of {Co(III)-Zn(II)} heterometallic complexes and their applications in Beckmann rearrangement reactions.
    Mishra A; Ali A; Upreti S; Gupta R
    Inorg Chem; 2008 Jan; 47(1):154-61. PubMed ID: 18072765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New three-dimensional metal-organic framework with heterometallic [Fe-Ag] building units: synthesis, crystal structure, and functional studies.
    Nayak S; Harms K; Dehnen S
    Inorg Chem; 2011 Apr; 50(7):2714-6. PubMed ID: 21361297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligonuclear polypyridylruthenium(II) complexes incorporating flexible polar and non-polar bridges: synthesis, DNA-binding and cytotoxicity.
    Mulyana Y; Weber DK; Buck DP; Motti CA; Collins JG; Keene FR
    Dalton Trans; 2011 Feb; 40(7):1510-23. PubMed ID: 21218244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxylate ligands drastically enhance the rates of oxo exchange and hydrogen peroxide disproportionation by oxo manganese compounds of potential biological significance.
    Dubois L; Pécaut J; Charlot MF; Baffert C; Collomb MN; Deronzier A; Latour JM
    Chemistry; 2008; 14(10):3013-25. PubMed ID: 18293345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.