These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20310061)

  • 1. Functional significance of genetic variation underlying limb bone diaphyseal structure.
    Wallace IJ; Middleton KM; Lublinsky S; Kelly SA; Judex S; Garland T; Demes B
    Am J Phys Anthropol; 2010 Sep; 143(1):21-30. PubMed ID: 20310061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic variations and physical activity as determinants of limb bone morphology: an experimental approach using a mouse model.
    Wallace IJ; Tommasini SM; Judex S; Garland T; Demes B
    Am J Phys Anthropol; 2012 May; 148(1):24-35. PubMed ID: 22331623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff's law.
    Morimoto N; Ponce de León MS; Zollikofer CP
    Anat Rec (Hoboken); 2011 Apr; 294(4):589-609. PubMed ID: 21328564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical activity alters limb bone structure but not entheseal morphology.
    Wallace IJ; Winchester JM; Su A; Boyer DM; Konow N
    J Hum Evol; 2017 Jun; 107():14-18. PubMed ID: 28526286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic and environmental effects on limb bone structure in gorillas.
    Ruff CB; Burgess ML; Junno JA; Mudakikwa A; Zollikofer CPE; Ponce de León MS; McFarlin SC
    Am J Phys Anthropol; 2018 Jun; 166(2):353-372. PubMed ID: 29430624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects.
    Ruff CB
    Am J Phys Anthropol; 2002 Dec; 119(4):305-42. PubMed ID: 12448016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long bone structural proportions and locomotor behavior in Cercopithecidae.
    Ruff CB; Harper CM; Goldstein DM; Daegling DJ; McGraw WS
    J Hum Evol; 2019 Jul; 132():47-60. PubMed ID: 31203851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in limb bone diaphyseal structure in chimpanzees during development.
    Bleuze MM
    Am J Biol Anthropol; 2024 Aug; 184(4):e24942. PubMed ID: 38602254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions?
    Niinimäki S; Narra N; Härkönen L; Abe S; Nikander R; Hyttinen J; Knüsel CJ; Sievänen H
    Am J Hum Biol; 2019 Jul; 31(4):e23246. PubMed ID: 31004392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2009 Sep; 140(1):160-72. PubMed ID: 19358297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of relative body breadth on the diaphyseal morphology of the human lower limb.
    Davies TG; Stock JT
    Am J Hum Biol; 2014; 26(6):822-35. PubMed ID: 25163696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of load-bearing exercise on skeletal structure and mechanics differ between outbred populations of mice.
    Wallace IJ; Judex S; Demes B
    Bone; 2015 Mar; 72():1-8. PubMed ID: 25460574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenetic and morphological variation in primate long bones reflects signals of size and behavior.
    Nadell JA; Elton S; Kovarovic K
    Am J Phys Anthropol; 2021 Feb; 174(2):327-351. PubMed ID: 33368154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the bending properties of long bones: Insights from an experimental mouse model.
    Peacock SJ; Coats BR; Kirkland JK; Tanner CA; Garland T; Middleton KM
    Am J Phys Anthropol; 2018 Mar; 165(3):457-470. PubMed ID: 29154456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related variation in limb bone diaphyseal structure among Inuit foragers from Point Hope, northern Alaska.
    Wallace IJ; Nesbitt A; Mongle C; Gould ES; Grine FE
    Arch Osteoporos; 2014; 9():202. PubMed ID: 25491658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of selective breeding for high voluntary wheel-running behavior on femoral nutrient canal size and abundance in house mice.
    Schwartz NL; Patel BA; Garland T; Horner AM
    J Anat; 2018 Aug; 233(2):193-203. PubMed ID: 29851089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diametral compression of non-circular diaphyseal bone sections.
    Womack WJ; Santoni BG; Puttlitz CM
    J Biomech; 2008; 41(1):194-9. PubMed ID: 17706657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapting in the Arctic: Habitual activity and landscape interaction in Late Holocene hunter-gatherers from Alaska.
    Temple DH; Rosa ER; Hunt DR; Ruff CB
    Am J Phys Anthropol; 2021 Sep; 176(1):3-20. PubMed ID: 33782942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femoral neck and shaft structure in Homo naledi from the Dinaledi Chamber (Rising Star System, South Africa).
    Friedl L; Claxton AG; Walker CS; Churchill SE; Holliday TW; Hawks J; Berger LR; DeSilva JM; Marchi D
    J Hum Evol; 2019 Aug; 133():61-77. PubMed ID: 31358184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2009 Sep; 140(1):149-59. PubMed ID: 19358289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.